Lithium Recovery from Aqueous Resources and Batteries: A Brief Review: A review of the methods to produce lithium and approaches to recycling from end-of-life lithium-ion batteries
The demand for lithium is expected to increase drastically in the near future due to the increased usage of rechargeable lithium-ion batteries (LIB) in electric vehicles, smartphones and other portable electronics. To alleviate the potential risk of undersupply, lithium can be extracted from raw sou...
Gespeichert in:
Veröffentlicht in: | Johnson Matthey technology review 2018-04, Vol.62 (2), p.161-176 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 176 |
---|---|
container_issue | 2 |
container_start_page | 161 |
container_title | Johnson Matthey technology review |
container_volume | 62 |
creator | Li, Ling Deshmane, Vishwanath G. Paranthaman, M. Parans Bhave, Ramesh Moyer, Bruce A. Harrison, Stephen |
description | The demand for lithium is expected to increase drastically in the near future due to the increased usage of rechargeable lithium-ion batteries (LIB) in electric vehicles, smartphones and other portable electronics. To alleviate the potential risk of undersupply, lithium can be extracted from raw sources consisting of minerals and brines or from recycled batteries and glasses. Aqueous lithium mining from naturally occurring brines and salt deposits is advantageous compared to extraction from minerals, since it may be more environmentally friendly and cost-effective. In this article, we briefly discuss the adsorptive behaviour, synthetic methodology and prospects or challenges of major sorbents including spinel lithium manganese oxide (Li-Mn-O or LMO), spinel lithium titanium oxide (Li-Ti-O or LTO) and lithium aluminium layered double hydroxide chloride (LiCl·2Al(OH)
3
). Membrane approaches and lithium recovery from end-of-life LIB will also be briefly discussed. |
doi_str_mv | 10.1595/205651317X696676 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599099163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599099163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-95a505557589586ae68144f07f9496472ec87620d5004ca766a759e7667cbf063</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxYMoWGrvHgOeVyfZncnG27bUD1gQRMHbEtMEt7jdmuxW-t-bUg_i6T1-PGYej7FLAdcCNd5IQEKRC_VGmkjRCZscUJYYnv7x52wW4xoAhJayIJiwZd0OH-3Y8Wdn-50Le-5D3_Hqa3T9GBON_Risi9xsVnxuhsGF1sVbXvF5Mj4Fdq37vmBn3nxGN_vVKXu9W74sHrL66f5xUdWZFaUcMo0GAREVlhpLMo5KURQelNeFpkJJZ0tFElYIUFijiIxC7ZIq--6B8im7Ot7dhj41jEOzTvU26WUjUWvQWlCeUnBM2dDHGJxvtqHtTNg3AprDXs3_vfIfNf5aLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599099163</pqid></control><display><type>article</type><title>Lithium Recovery from Aqueous Resources and Batteries: A Brief Review: A review of the methods to produce lithium and approaches to recycling from end-of-life lithium-ion batteries</title><source>Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Ling ; Deshmane, Vishwanath G. ; Paranthaman, M. Parans ; Bhave, Ramesh ; Moyer, Bruce A. ; Harrison, Stephen</creator><creatorcontrib>Li, Ling ; Deshmane, Vishwanath G. ; Paranthaman, M. Parans ; Bhave, Ramesh ; Moyer, Bruce A. ; Harrison, Stephen</creatorcontrib><description>The demand for lithium is expected to increase drastically in the near future due to the increased usage of rechargeable lithium-ion batteries (LIB) in electric vehicles, smartphones and other portable electronics. To alleviate the potential risk of undersupply, lithium can be extracted from raw sources consisting of minerals and brines or from recycled batteries and glasses. Aqueous lithium mining from naturally occurring brines and salt deposits is advantageous compared to extraction from minerals, since it may be more environmentally friendly and cost-effective. In this article, we briefly discuss the adsorptive behaviour, synthetic methodology and prospects or challenges of major sorbents including spinel lithium manganese oxide (Li-Mn-O or LMO), spinel lithium titanium oxide (Li-Ti-O or LTO) and lithium aluminium layered double hydroxide chloride (LiCl·2Al(OH)
3
). Membrane approaches and lithium recovery from end-of-life LIB will also be briefly discussed.</description><identifier>ISSN: 2056-5135</identifier><identifier>EISSN: 2056-5135</identifier><identifier>DOI: 10.1595/205651317X696676</identifier><language>eng</language><publisher>London: Johnson Matthey PLC</publisher><subject>Adsorptivity ; Aluminum ; Brines ; Electric vehicles ; End of life ; Lithium ; Lithium manganese oxides ; Lithium-ion batteries ; Manganese ; Minerals ; Rechargeable batteries ; Salt deposits ; Smartphones ; Sorbents ; Spinel ; Titanium oxides</subject><ispartof>Johnson Matthey technology review, 2018-04, Vol.62 (2), p.161-176</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Deshmane, Vishwanath G.</creatorcontrib><creatorcontrib>Paranthaman, M. Parans</creatorcontrib><creatorcontrib>Bhave, Ramesh</creatorcontrib><creatorcontrib>Moyer, Bruce A.</creatorcontrib><creatorcontrib>Harrison, Stephen</creatorcontrib><title>Lithium Recovery from Aqueous Resources and Batteries: A Brief Review: A review of the methods to produce lithium and approaches to recycling from end-of-life lithium-ion batteries</title><title>Johnson Matthey technology review</title><description>The demand for lithium is expected to increase drastically in the near future due to the increased usage of rechargeable lithium-ion batteries (LIB) in electric vehicles, smartphones and other portable electronics. To alleviate the potential risk of undersupply, lithium can be extracted from raw sources consisting of minerals and brines or from recycled batteries and glasses. Aqueous lithium mining from naturally occurring brines and salt deposits is advantageous compared to extraction from minerals, since it may be more environmentally friendly and cost-effective. In this article, we briefly discuss the adsorptive behaviour, synthetic methodology and prospects or challenges of major sorbents including spinel lithium manganese oxide (Li-Mn-O or LMO), spinel lithium titanium oxide (Li-Ti-O or LTO) and lithium aluminium layered double hydroxide chloride (LiCl·2Al(OH)
3
). Membrane approaches and lithium recovery from end-of-life LIB will also be briefly discussed.</description><subject>Adsorptivity</subject><subject>Aluminum</subject><subject>Brines</subject><subject>Electric vehicles</subject><subject>End of life</subject><subject>Lithium</subject><subject>Lithium manganese oxides</subject><subject>Lithium-ion batteries</subject><subject>Manganese</subject><subject>Minerals</subject><subject>Rechargeable batteries</subject><subject>Salt deposits</subject><subject>Smartphones</subject><subject>Sorbents</subject><subject>Spinel</subject><subject>Titanium oxides</subject><issn>2056-5135</issn><issn>2056-5135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkM1LAzEQxYMoWGrvHgOeVyfZncnG27bUD1gQRMHbEtMEt7jdmuxW-t-bUg_i6T1-PGYej7FLAdcCNd5IQEKRC_VGmkjRCZscUJYYnv7x52wW4xoAhJayIJiwZd0OH-3Y8Wdn-50Le-5D3_Hqa3T9GBON_Risi9xsVnxuhsGF1sVbXvF5Mj4Fdq37vmBn3nxGN_vVKXu9W74sHrL66f5xUdWZFaUcMo0GAREVlhpLMo5KURQelNeFpkJJZ0tFElYIUFijiIxC7ZIq--6B8im7Ot7dhj41jEOzTvU26WUjUWvQWlCeUnBM2dDHGJxvtqHtTNg3AprDXs3_vfIfNf5aLg</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Li, Ling</creator><creator>Deshmane, Vishwanath G.</creator><creator>Paranthaman, M. Parans</creator><creator>Bhave, Ramesh</creator><creator>Moyer, Bruce A.</creator><creator>Harrison, Stephen</creator><general>Johnson Matthey PLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JG9</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180401</creationdate><title>Lithium Recovery from Aqueous Resources and Batteries: A Brief Review</title><author>Li, Ling ; Deshmane, Vishwanath G. ; Paranthaman, M. Parans ; Bhave, Ramesh ; Moyer, Bruce A. ; Harrison, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-95a505557589586ae68144f07f9496472ec87620d5004ca766a759e7667cbf063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorptivity</topic><topic>Aluminum</topic><topic>Brines</topic><topic>Electric vehicles</topic><topic>End of life</topic><topic>Lithium</topic><topic>Lithium manganese oxides</topic><topic>Lithium-ion batteries</topic><topic>Manganese</topic><topic>Minerals</topic><topic>Rechargeable batteries</topic><topic>Salt deposits</topic><topic>Smartphones</topic><topic>Sorbents</topic><topic>Spinel</topic><topic>Titanium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Deshmane, Vishwanath G.</creatorcontrib><creatorcontrib>Paranthaman, M. Parans</creatorcontrib><creatorcontrib>Bhave, Ramesh</creatorcontrib><creatorcontrib>Moyer, Bruce A.</creatorcontrib><creatorcontrib>Harrison, Stephen</creatorcontrib><collection>CrossRef</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Materials Research Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Johnson Matthey technology review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ling</au><au>Deshmane, Vishwanath G.</au><au>Paranthaman, M. Parans</au><au>Bhave, Ramesh</au><au>Moyer, Bruce A.</au><au>Harrison, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium Recovery from Aqueous Resources and Batteries: A Brief Review: A review of the methods to produce lithium and approaches to recycling from end-of-life lithium-ion batteries</atitle><jtitle>Johnson Matthey technology review</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>62</volume><issue>2</issue><spage>161</spage><epage>176</epage><pages>161-176</pages><issn>2056-5135</issn><eissn>2056-5135</eissn><abstract>The demand for lithium is expected to increase drastically in the near future due to the increased usage of rechargeable lithium-ion batteries (LIB) in electric vehicles, smartphones and other portable electronics. To alleviate the potential risk of undersupply, lithium can be extracted from raw sources consisting of minerals and brines or from recycled batteries and glasses. Aqueous lithium mining from naturally occurring brines and salt deposits is advantageous compared to extraction from minerals, since it may be more environmentally friendly and cost-effective. In this article, we briefly discuss the adsorptive behaviour, synthetic methodology and prospects or challenges of major sorbents including spinel lithium manganese oxide (Li-Mn-O or LMO), spinel lithium titanium oxide (Li-Ti-O or LTO) and lithium aluminium layered double hydroxide chloride (LiCl·2Al(OH)
3
). Membrane approaches and lithium recovery from end-of-life LIB will also be briefly discussed.</abstract><cop>London</cop><pub>Johnson Matthey PLC</pub><doi>10.1595/205651317X696676</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2056-5135 |
ispartof | Johnson Matthey technology review, 2018-04, Vol.62 (2), p.161-176 |
issn | 2056-5135 2056-5135 |
language | eng |
recordid | cdi_proquest_journals_2599099163 |
source | Directory of Open Access Journals; Free Full-Text Journals in Chemistry |
subjects | Adsorptivity Aluminum Brines Electric vehicles End of life Lithium Lithium manganese oxides Lithium-ion batteries Manganese Minerals Rechargeable batteries Salt deposits Smartphones Sorbents Spinel Titanium oxides |
title | Lithium Recovery from Aqueous Resources and Batteries: A Brief Review: A review of the methods to produce lithium and approaches to recycling from end-of-life lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A45%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20Recovery%20from%20Aqueous%20Resources%20and%20Batteries:%20A%20Brief%20Review:%20A%20review%20of%20the%20methods%20to%20produce%20lithium%20and%20approaches%20to%20recycling%20from%20end-of-life%20lithium-ion%20batteries&rft.jtitle=Johnson%20Matthey%20technology%20review&rft.au=Li,%20Ling&rft.date=2018-04-01&rft.volume=62&rft.issue=2&rft.spage=161&rft.epage=176&rft.pages=161-176&rft.issn=2056-5135&rft.eissn=2056-5135&rft_id=info:doi/10.1595/205651317X696676&rft_dat=%3Cproquest_cross%3E2599099163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599099163&rft_id=info:pmid/&rfr_iscdi=true |