Spectral asymptotics for the vectorial damped wave equation
The eigenfrequencies associated to a scalar damped wave equation are known to belong to a band parallel to the real axis. In [Sj{\"o}00] J. Sj{\"o}strand showed that up to a set of density 0, the eigenfrequencies are confined in a thinner band determined by the Birkhoff limits of the dampi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Klein, Guillaume |
description | The eigenfrequencies associated to a scalar damped wave equation are known to belong to a band parallel to the real axis. In [Sj{\"o}00] J. Sj{\"o}strand showed that up to a set of density 0, the eigenfrequencies are confined in a thinner band determined by the Birkhoff limits of the damping term. In this article we show that this result is still true for a vectorial damped wave equation. In this setting the Lyapunov exponents of the cocycle given by the damping term play the role of the Birkhoff limits of the scalar setting. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2598841121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598841121</sourcerecordid><originalsourceid>FETCH-proquest_journals_25988411213</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC8lNoxFHUdx1L6G9xZS2SfNT8e3t4AM4neE7K5KBELxQJcCG5CF0jDE4HEFKkZHzw2Edve6pDp_BRRtNHWhrPY0vpPNi1ptFGz04bOhbz0hxSjoaO-7IutV9wPzXLdnfrs_LvXDeTglDrDqb_LhQBfKkVMk5cPHf9QVI2TfF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598841121</pqid></control><display><type>article</type><title>Spectral asymptotics for the vectorial damped wave equation</title><source>Free E- Journals</source><creator>Klein, Guillaume</creator><creatorcontrib>Klein, Guillaume</creatorcontrib><description>The eigenfrequencies associated to a scalar damped wave equation are known to belong to a band parallel to the real axis. In [Sj{\"o}00] J. Sj{\"o}strand showed that up to a set of density 0, the eigenfrequencies are confined in a thinner band determined by the Birkhoff limits of the damping term. In this article we show that this result is still true for a vectorial damped wave equation. In this setting the Lyapunov exponents of the cocycle given by the damping term play the role of the Birkhoff limits of the scalar setting.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Damping ; Liapunov exponents ; Resonant frequencies ; Wave equations</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Klein, Guillaume</creatorcontrib><title>Spectral asymptotics for the vectorial damped wave equation</title><title>arXiv.org</title><description>The eigenfrequencies associated to a scalar damped wave equation are known to belong to a band parallel to the real axis. In [Sj{\"o}00] J. Sj{\"o}strand showed that up to a set of density 0, the eigenfrequencies are confined in a thinner band determined by the Birkhoff limits of the damping term. In this article we show that this result is still true for a vectorial damped wave equation. In this setting the Lyapunov exponents of the cocycle given by the damping term play the role of the Birkhoff limits of the scalar setting.</description><subject>Damping</subject><subject>Liapunov exponents</subject><subject>Resonant frequencies</subject><subject>Wave equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC8lNoxFHUdx1L6G9xZS2SfNT8e3t4AM4neE7K5KBELxQJcCG5CF0jDE4HEFKkZHzw2Edve6pDp_BRRtNHWhrPY0vpPNi1ptFGz04bOhbz0hxSjoaO-7IutV9wPzXLdnfrs_LvXDeTglDrDqb_LhQBfKkVMk5cPHf9QVI2TfF</recordid><startdate>20211117</startdate><enddate>20211117</enddate><creator>Klein, Guillaume</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211117</creationdate><title>Spectral asymptotics for the vectorial damped wave equation</title><author>Klein, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25988411213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Damping</topic><topic>Liapunov exponents</topic><topic>Resonant frequencies</topic><topic>Wave equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Klein, Guillaume</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Guillaume</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Spectral asymptotics for the vectorial damped wave equation</atitle><jtitle>arXiv.org</jtitle><date>2021-11-17</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>The eigenfrequencies associated to a scalar damped wave equation are known to belong to a band parallel to the real axis. In [Sj{\"o}00] J. Sj{\"o}strand showed that up to a set of density 0, the eigenfrequencies are confined in a thinner band determined by the Birkhoff limits of the damping term. In this article we show that this result is still true for a vectorial damped wave equation. In this setting the Lyapunov exponents of the cocycle given by the damping term play the role of the Birkhoff limits of the scalar setting.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2598841121 |
source | Free E- Journals |
subjects | Damping Liapunov exponents Resonant frequencies Wave equations |
title | Spectral asymptotics for the vectorial damped wave equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Spectral%20asymptotics%20for%20the%20vectorial%20damped%20wave%20equation&rft.jtitle=arXiv.org&rft.au=Klein,%20Guillaume&rft.date=2021-11-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2598841121%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598841121&rft_id=info:pmid/&rfr_iscdi=true |