Information-devoid routes for scale-free neurodynamics
Neuroscientists are able to detect physical changes in information entropy in the available neurodata. However, the information paradigm is inadequate to describe fully nervous dynamics and mental activities such as perception. This paper suggests explanations to neural dynamics that provide an alte...
Gespeichert in:
Veröffentlicht in: | Synthese (Dordrecht) 2021-12, Vol.199 (1/2), p.2491-2504 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2504 |
---|---|
container_issue | 1/2 |
container_start_page | 2491 |
container_title | Synthese (Dordrecht) |
container_volume | 199 |
creator | Tozzi, Arturo Peters, James F. |
description | Neuroscientists are able to detect physical changes in information entropy in the available neurodata. However, the information paradigm is inadequate to describe fully nervous dynamics and mental activities such as perception. This paper suggests explanations to neural dynamics that provide an alternative to thermodynamic and information accounts. We recall the Banach–Tarski paradox (BTP), which informally states that when pieces of a ball are moved and rotated without changing their shape, a synergy between two balls of the same volume is achieved instead of the original one. We show how and why BTP might display this physical and biological synergy meaningfully, making it possible to model nervous activities. The anatomical and functional structure of the central nervous system’s nodes and edges makes it possible to perform a sequence of moves inside the connectome that doubles the amount of available cortical oscillations. In particular, a BTP-based mechanism permits scale-invariant nervous oscillations to amplify and propagate towards widely separated brain areas. Paraphrasing the BTP’s definition, we could state that: when a few components of a self-similar nervous oscillation are moved and rotated throughout the cortical connectome, two self-similar oscillations are achieved instead of the original one. Furthermore, based on topological structures, we illustrate how, counterintuitively, the amplification of scale-free oscillations does not require information transfer. |
doi_str_mv | 10.1007/s11229-020-02895-7 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2598838385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48692955</jstor_id><sourcerecordid>48692955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-6b11a73dede19f9ea12dad2d84e939cd1de4388d4e374de34a180a87fa1854253</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfQBAWPEczeWySoxQfhYIXPYe4mZUt7aYmu0K_vakrepNhGBj-D_gRcgnsBhjTtxmAc0sZZ2WNVVQfkRkoLSiztTwmM8aEpdoofUrOcl4zBlBLNiP1sm9j2vqhiz0N-Bm7UKU4Dpir8q9y4zdI24RY9TimGPa933ZNPicnrd9kvPi5c_L6cP-yeKKr58fl4m5FG2HUQOs3AK9FwIBgW4seePCBByPRCtsECCiFMUGi0DKgkB4M80a35SrJlZiT6yl3l-LHiHlw6zimvlQ6rqwxosxBxSdVk2LOCVu3S93Wp70D5g583MTHFT7um4_TxSQmUy7i_h3TX_S_rqvJtc5DTL890tSWW6XEF3nAceE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598838385</pqid></control><display><type>article</type><title>Information-devoid routes for scale-free neurodynamics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tozzi, Arturo ; Peters, James F.</creator><creatorcontrib>Tozzi, Arturo ; Peters, James F.</creatorcontrib><description>Neuroscientists are able to detect physical changes in information entropy in the available neurodata. However, the information paradigm is inadequate to describe fully nervous dynamics and mental activities such as perception. This paper suggests explanations to neural dynamics that provide an alternative to thermodynamic and information accounts. We recall the Banach–Tarski paradox (BTP), which informally states that when pieces of a ball are moved and rotated without changing their shape, a synergy between two balls of the same volume is achieved instead of the original one. We show how and why BTP might display this physical and biological synergy meaningfully, making it possible to model nervous activities. The anatomical and functional structure of the central nervous system’s nodes and edges makes it possible to perform a sequence of moves inside the connectome that doubles the amount of available cortical oscillations. In particular, a BTP-based mechanism permits scale-invariant nervous oscillations to amplify and propagate towards widely separated brain areas. Paraphrasing the BTP’s definition, we could state that: when a few components of a self-similar nervous oscillation are moved and rotated throughout the cortical connectome, two self-similar oscillations are achieved instead of the original one. Furthermore, based on topological structures, we illustrate how, counterintuitively, the amplification of scale-free oscillations does not require information transfer.</description><identifier>ISSN: 0039-7857</identifier><identifier>EISSN: 1573-0964</identifier><identifier>DOI: 10.1007/s11229-020-02895-7</identifier><language>eng</language><publisher>Dordrecht: Springer Science + Business Media</publisher><subject>Brain ; Education ; Epistemology ; Fractals ; Information theory ; Logic ; Metaphysics ; Nervous system ; Perceptions ; Philosophy ; Philosophy of Language ; Philosophy of Science</subject><ispartof>Synthese (Dordrecht), 2021-12, Vol.199 (1/2), p.2491-2504</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-6b11a73dede19f9ea12dad2d84e939cd1de4388d4e374de34a180a87fa1854253</citedby><cites>FETCH-LOGICAL-c385t-6b11a73dede19f9ea12dad2d84e939cd1de4388d4e374de34a180a87fa1854253</cites><orcidid>0000-0001-8426-4860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11229-020-02895-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11229-020-02895-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tozzi, Arturo</creatorcontrib><creatorcontrib>Peters, James F.</creatorcontrib><title>Information-devoid routes for scale-free neurodynamics</title><title>Synthese (Dordrecht)</title><addtitle>Synthese</addtitle><description>Neuroscientists are able to detect physical changes in information entropy in the available neurodata. However, the information paradigm is inadequate to describe fully nervous dynamics and mental activities such as perception. This paper suggests explanations to neural dynamics that provide an alternative to thermodynamic and information accounts. We recall the Banach–Tarski paradox (BTP), which informally states that when pieces of a ball are moved and rotated without changing their shape, a synergy between two balls of the same volume is achieved instead of the original one. We show how and why BTP might display this physical and biological synergy meaningfully, making it possible to model nervous activities. The anatomical and functional structure of the central nervous system’s nodes and edges makes it possible to perform a sequence of moves inside the connectome that doubles the amount of available cortical oscillations. In particular, a BTP-based mechanism permits scale-invariant nervous oscillations to amplify and propagate towards widely separated brain areas. Paraphrasing the BTP’s definition, we could state that: when a few components of a self-similar nervous oscillation are moved and rotated throughout the cortical connectome, two self-similar oscillations are achieved instead of the original one. Furthermore, based on topological structures, we illustrate how, counterintuitively, the amplification of scale-free oscillations does not require information transfer.</description><subject>Brain</subject><subject>Education</subject><subject>Epistemology</subject><subject>Fractals</subject><subject>Information theory</subject><subject>Logic</subject><subject>Metaphysics</subject><subject>Nervous system</subject><subject>Perceptions</subject><subject>Philosophy</subject><subject>Philosophy of Language</subject><subject>Philosophy of Science</subject><issn>0039-7857</issn><issn>1573-0964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>AVQMV</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEQx4MoWKtfQBAWPEczeWySoxQfhYIXPYe4mZUt7aYmu0K_vakrepNhGBj-D_gRcgnsBhjTtxmAc0sZZ2WNVVQfkRkoLSiztTwmM8aEpdoofUrOcl4zBlBLNiP1sm9j2vqhiz0N-Bm7UKU4Dpir8q9y4zdI24RY9TimGPa933ZNPicnrd9kvPi5c_L6cP-yeKKr58fl4m5FG2HUQOs3AK9FwIBgW4seePCBByPRCtsECCiFMUGi0DKgkB4M80a35SrJlZiT6yl3l-LHiHlw6zimvlQ6rqwxosxBxSdVk2LOCVu3S93Wp70D5g583MTHFT7um4_TxSQmUy7i_h3TX_S_rqvJtc5DTL890tSWW6XEF3nAceE</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Tozzi, Arturo</creator><creator>Peters, James F.</creator><general>Springer Science + Business Media</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K50</scope><scope>LIQON</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8426-4860</orcidid></search><sort><creationdate>20211201</creationdate><title>Information-devoid routes for scale-free neurodynamics</title><author>Tozzi, Arturo ; Peters, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-6b11a73dede19f9ea12dad2d84e939cd1de4388d4e374de34a180a87fa1854253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain</topic><topic>Education</topic><topic>Epistemology</topic><topic>Fractals</topic><topic>Information theory</topic><topic>Logic</topic><topic>Metaphysics</topic><topic>Nervous system</topic><topic>Perceptions</topic><topic>Philosophy</topic><topic>Philosophy of Language</topic><topic>Philosophy of Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tozzi, Arturo</creatorcontrib><creatorcontrib>Peters, James F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences & Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Art, Design & Architecture Collection</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Arts & Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Synthese (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tozzi, Arturo</au><au>Peters, James F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information-devoid routes for scale-free neurodynamics</atitle><jtitle>Synthese (Dordrecht)</jtitle><stitle>Synthese</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>199</volume><issue>1/2</issue><spage>2491</spage><epage>2504</epage><pages>2491-2504</pages><issn>0039-7857</issn><eissn>1573-0964</eissn><abstract>Neuroscientists are able to detect physical changes in information entropy in the available neurodata. However, the information paradigm is inadequate to describe fully nervous dynamics and mental activities such as perception. This paper suggests explanations to neural dynamics that provide an alternative to thermodynamic and information accounts. We recall the Banach–Tarski paradox (BTP), which informally states that when pieces of a ball are moved and rotated without changing their shape, a synergy between two balls of the same volume is achieved instead of the original one. We show how and why BTP might display this physical and biological synergy meaningfully, making it possible to model nervous activities. The anatomical and functional structure of the central nervous system’s nodes and edges makes it possible to perform a sequence of moves inside the connectome that doubles the amount of available cortical oscillations. In particular, a BTP-based mechanism permits scale-invariant nervous oscillations to amplify and propagate towards widely separated brain areas. Paraphrasing the BTP’s definition, we could state that: when a few components of a self-similar nervous oscillation are moved and rotated throughout the cortical connectome, two self-similar oscillations are achieved instead of the original one. Furthermore, based on topological structures, we illustrate how, counterintuitively, the amplification of scale-free oscillations does not require information transfer.</abstract><cop>Dordrecht</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s11229-020-02895-7</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8426-4860</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-7857 |
ispartof | Synthese (Dordrecht), 2021-12, Vol.199 (1/2), p.2491-2504 |
issn | 0039-7857 1573-0964 |
language | eng |
recordid | cdi_proquest_journals_2598838385 |
source | SpringerLink Journals - AutoHoldings |
subjects | Brain Education Epistemology Fractals Information theory Logic Metaphysics Nervous system Perceptions Philosophy Philosophy of Language Philosophy of Science |
title | Information-devoid routes for scale-free neurodynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information-devoid%20routes%20for%20scale-free%20neurodynamics&rft.jtitle=Synthese%20(Dordrecht)&rft.au=Tozzi,%20Arturo&rft.date=2021-12-01&rft.volume=199&rft.issue=1/2&rft.spage=2491&rft.epage=2504&rft.pages=2491-2504&rft.issn=0039-7857&rft.eissn=1573-0964&rft_id=info:doi/10.1007/s11229-020-02895-7&rft_dat=%3Cjstor_proqu%3E48692955%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598838385&rft_id=info:pmid/&rft_jstor_id=48692955&rfr_iscdi=true |