Information-devoid routes for scale-free neurodynamics

Neuroscientists are able to detect physical changes in information entropy in the available neurodata. However, the information paradigm is inadequate to describe fully nervous dynamics and mental activities such as perception. This paper suggests explanations to neural dynamics that provide an alte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Synthese (Dordrecht) 2021-12, Vol.199 (1/2), p.2491-2504
Hauptverfasser: Tozzi, Arturo, Peters, James F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2504
container_issue 1/2
container_start_page 2491
container_title Synthese (Dordrecht)
container_volume 199
creator Tozzi, Arturo
Peters, James F.
description Neuroscientists are able to detect physical changes in information entropy in the available neurodata. However, the information paradigm is inadequate to describe fully nervous dynamics and mental activities such as perception. This paper suggests explanations to neural dynamics that provide an alternative to thermodynamic and information accounts. We recall the Banach–Tarski paradox (BTP), which informally states that when pieces of a ball are moved and rotated without changing their shape, a synergy between two balls of the same volume is achieved instead of the original one. We show how and why BTP might display this physical and biological synergy meaningfully, making it possible to model nervous activities. The anatomical and functional structure of the central nervous system’s nodes and edges makes it possible to perform a sequence of moves inside the connectome that doubles the amount of available cortical oscillations. In particular, a BTP-based mechanism permits scale-invariant nervous oscillations to amplify and propagate towards widely separated brain areas. Paraphrasing the BTP’s definition, we could state that: when a few components of a self-similar nervous oscillation are moved and rotated throughout the cortical connectome, two self-similar oscillations are achieved instead of the original one. Furthermore, based on topological structures, we illustrate how, counterintuitively, the amplification of scale-free oscillations does not require information transfer.
doi_str_mv 10.1007/s11229-020-02895-7
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2598838385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48692955</jstor_id><sourcerecordid>48692955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-6b11a73dede19f9ea12dad2d84e939cd1de4388d4e374de34a180a87fa1854253</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfQBAWPEczeWySoxQfhYIXPYe4mZUt7aYmu0K_vakrepNhGBj-D_gRcgnsBhjTtxmAc0sZZ2WNVVQfkRkoLSiztTwmM8aEpdoofUrOcl4zBlBLNiP1sm9j2vqhiz0N-Bm7UKU4Dpir8q9y4zdI24RY9TimGPa933ZNPicnrd9kvPi5c_L6cP-yeKKr58fl4m5FG2HUQOs3AK9FwIBgW4seePCBByPRCtsECCiFMUGi0DKgkB4M80a35SrJlZiT6yl3l-LHiHlw6zimvlQ6rqwxosxBxSdVk2LOCVu3S93Wp70D5g583MTHFT7um4_TxSQmUy7i_h3TX_S_rqvJtc5DTL890tSWW6XEF3nAceE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598838385</pqid></control><display><type>article</type><title>Information-devoid routes for scale-free neurodynamics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tozzi, Arturo ; Peters, James F.</creator><creatorcontrib>Tozzi, Arturo ; Peters, James F.</creatorcontrib><description>Neuroscientists are able to detect physical changes in information entropy in the available neurodata. However, the information paradigm is inadequate to describe fully nervous dynamics and mental activities such as perception. This paper suggests explanations to neural dynamics that provide an alternative to thermodynamic and information accounts. We recall the Banach–Tarski paradox (BTP), which informally states that when pieces of a ball are moved and rotated without changing their shape, a synergy between two balls of the same volume is achieved instead of the original one. We show how and why BTP might display this physical and biological synergy meaningfully, making it possible to model nervous activities. The anatomical and functional structure of the central nervous system’s nodes and edges makes it possible to perform a sequence of moves inside the connectome that doubles the amount of available cortical oscillations. In particular, a BTP-based mechanism permits scale-invariant nervous oscillations to amplify and propagate towards widely separated brain areas. Paraphrasing the BTP’s definition, we could state that: when a few components of a self-similar nervous oscillation are moved and rotated throughout the cortical connectome, two self-similar oscillations are achieved instead of the original one. Furthermore, based on topological structures, we illustrate how, counterintuitively, the amplification of scale-free oscillations does not require information transfer.</description><identifier>ISSN: 0039-7857</identifier><identifier>EISSN: 1573-0964</identifier><identifier>DOI: 10.1007/s11229-020-02895-7</identifier><language>eng</language><publisher>Dordrecht: Springer Science + Business Media</publisher><subject>Brain ; Education ; Epistemology ; Fractals ; Information theory ; Logic ; Metaphysics ; Nervous system ; Perceptions ; Philosophy ; Philosophy of Language ; Philosophy of Science</subject><ispartof>Synthese (Dordrecht), 2021-12, Vol.199 (1/2), p.2491-2504</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-6b11a73dede19f9ea12dad2d84e939cd1de4388d4e374de34a180a87fa1854253</citedby><cites>FETCH-LOGICAL-c385t-6b11a73dede19f9ea12dad2d84e939cd1de4388d4e374de34a180a87fa1854253</cites><orcidid>0000-0001-8426-4860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11229-020-02895-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11229-020-02895-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tozzi, Arturo</creatorcontrib><creatorcontrib>Peters, James F.</creatorcontrib><title>Information-devoid routes for scale-free neurodynamics</title><title>Synthese (Dordrecht)</title><addtitle>Synthese</addtitle><description>Neuroscientists are able to detect physical changes in information entropy in the available neurodata. However, the information paradigm is inadequate to describe fully nervous dynamics and mental activities such as perception. This paper suggests explanations to neural dynamics that provide an alternative to thermodynamic and information accounts. We recall the Banach–Tarski paradox (BTP), which informally states that when pieces of a ball are moved and rotated without changing their shape, a synergy between two balls of the same volume is achieved instead of the original one. We show how and why BTP might display this physical and biological synergy meaningfully, making it possible to model nervous activities. The anatomical and functional structure of the central nervous system’s nodes and edges makes it possible to perform a sequence of moves inside the connectome that doubles the amount of available cortical oscillations. In particular, a BTP-based mechanism permits scale-invariant nervous oscillations to amplify and propagate towards widely separated brain areas. Paraphrasing the BTP’s definition, we could state that: when a few components of a self-similar nervous oscillation are moved and rotated throughout the cortical connectome, two self-similar oscillations are achieved instead of the original one. Furthermore, based on topological structures, we illustrate how, counterintuitively, the amplification of scale-free oscillations does not require information transfer.</description><subject>Brain</subject><subject>Education</subject><subject>Epistemology</subject><subject>Fractals</subject><subject>Information theory</subject><subject>Logic</subject><subject>Metaphysics</subject><subject>Nervous system</subject><subject>Perceptions</subject><subject>Philosophy</subject><subject>Philosophy of Language</subject><subject>Philosophy of Science</subject><issn>0039-7857</issn><issn>1573-0964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>AVQMV</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEQx4MoWKtfQBAWPEczeWySoxQfhYIXPYe4mZUt7aYmu0K_vakrepNhGBj-D_gRcgnsBhjTtxmAc0sZZ2WNVVQfkRkoLSiztTwmM8aEpdoofUrOcl4zBlBLNiP1sm9j2vqhiz0N-Bm7UKU4Dpir8q9y4zdI24RY9TimGPa933ZNPicnrd9kvPi5c_L6cP-yeKKr58fl4m5FG2HUQOs3AK9FwIBgW4seePCBByPRCtsECCiFMUGi0DKgkB4M80a35SrJlZiT6yl3l-LHiHlw6zimvlQ6rqwxosxBxSdVk2LOCVu3S93Wp70D5g583MTHFT7um4_TxSQmUy7i_h3TX_S_rqvJtc5DTL890tSWW6XEF3nAceE</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Tozzi, Arturo</creator><creator>Peters, James F.</creator><general>Springer Science + Business Media</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K50</scope><scope>LIQON</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8426-4860</orcidid></search><sort><creationdate>20211201</creationdate><title>Information-devoid routes for scale-free neurodynamics</title><author>Tozzi, Arturo ; Peters, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-6b11a73dede19f9ea12dad2d84e939cd1de4388d4e374de34a180a87fa1854253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain</topic><topic>Education</topic><topic>Epistemology</topic><topic>Fractals</topic><topic>Information theory</topic><topic>Logic</topic><topic>Metaphysics</topic><topic>Nervous system</topic><topic>Perceptions</topic><topic>Philosophy</topic><topic>Philosophy of Language</topic><topic>Philosophy of Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tozzi, Arturo</creatorcontrib><creatorcontrib>Peters, James F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences &amp; Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Art, Design &amp; Architecture Collection</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Arts &amp; Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Synthese (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tozzi, Arturo</au><au>Peters, James F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information-devoid routes for scale-free neurodynamics</atitle><jtitle>Synthese (Dordrecht)</jtitle><stitle>Synthese</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>199</volume><issue>1/2</issue><spage>2491</spage><epage>2504</epage><pages>2491-2504</pages><issn>0039-7857</issn><eissn>1573-0964</eissn><abstract>Neuroscientists are able to detect physical changes in information entropy in the available neurodata. However, the information paradigm is inadequate to describe fully nervous dynamics and mental activities such as perception. This paper suggests explanations to neural dynamics that provide an alternative to thermodynamic and information accounts. We recall the Banach–Tarski paradox (BTP), which informally states that when pieces of a ball are moved and rotated without changing their shape, a synergy between two balls of the same volume is achieved instead of the original one. We show how and why BTP might display this physical and biological synergy meaningfully, making it possible to model nervous activities. The anatomical and functional structure of the central nervous system’s nodes and edges makes it possible to perform a sequence of moves inside the connectome that doubles the amount of available cortical oscillations. In particular, a BTP-based mechanism permits scale-invariant nervous oscillations to amplify and propagate towards widely separated brain areas. Paraphrasing the BTP’s definition, we could state that: when a few components of a self-similar nervous oscillation are moved and rotated throughout the cortical connectome, two self-similar oscillations are achieved instead of the original one. Furthermore, based on topological structures, we illustrate how, counterintuitively, the amplification of scale-free oscillations does not require information transfer.</abstract><cop>Dordrecht</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s11229-020-02895-7</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8426-4860</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-7857
ispartof Synthese (Dordrecht), 2021-12, Vol.199 (1/2), p.2491-2504
issn 0039-7857
1573-0964
language eng
recordid cdi_proquest_journals_2598838385
source SpringerLink Journals - AutoHoldings
subjects Brain
Education
Epistemology
Fractals
Information theory
Logic
Metaphysics
Nervous system
Perceptions
Philosophy
Philosophy of Language
Philosophy of Science
title Information-devoid routes for scale-free neurodynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information-devoid%20routes%20for%20scale-free%20neurodynamics&rft.jtitle=Synthese%20(Dordrecht)&rft.au=Tozzi,%20Arturo&rft.date=2021-12-01&rft.volume=199&rft.issue=1/2&rft.spage=2491&rft.epage=2504&rft.pages=2491-2504&rft.issn=0039-7857&rft.eissn=1573-0964&rft_id=info:doi/10.1007/s11229-020-02895-7&rft_dat=%3Cjstor_proqu%3E48692955%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598838385&rft_id=info:pmid/&rft_jstor_id=48692955&rfr_iscdi=true