Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis
The oxygen evolution reaction (OER) is an essential anode reaction for the generation of fuels through water splitting or CO 2 electroreduction. Mixed metal oxides containing Co, Fe or Ni have proved to be the most promising OER electrocatalysts in alkaline media. However, the active sites and react...
Gespeichert in:
Veröffentlicht in: | Nature energy 2021-11, Vol.6 (11), p.1054-1066 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1066 |
---|---|
container_issue | 11 |
container_start_page | 1054 |
container_title | Nature energy |
container_volume | 6 |
creator | Bai, Lichen Hsu, Chia-Shuo Alexander, Duncan T. L. Chen, Hao Ming Hu, Xile |
description | The oxygen evolution reaction (OER) is an essential anode reaction for the generation of fuels through water splitting or CO
2
electroreduction. Mixed metal oxides containing Co, Fe or Ni have proved to be the most promising OER electrocatalysts in alkaline media. However, the active sites and reaction mechanisms of these catalysts are difficult to study due to their heterogeneous nature. Here we describe a general synthesis of Co-, Fe- and Ni-containing double-atom catalysts from their single-atom precursors via in situ electrochemical transformation. Characterization reveals molecule-like bimetallic active sites for these supported catalysts. For each catalyst, we propose a catalytic cycle; all exhibit bimetallic cooperation and follow a similar O–O bond-forming step. However, the mechanisms diverge in the site and source of OH
−
for O–O bond formation, as well as the order of proton and electron transfer. Our work demonstrates double-atom catalysts as an attractive platform for fundamental studies of heterogeneous OER electrocatalysts.
Oxygen evolution reaction (OER) catalysts often comprise multiple metal ions in various configurations, hampering mechanistic understanding of how catalysis proceeds. Now, researchers prepare a series of double-atom OER catalysts based on Ni, Fe and Co, which act as molecular-like models and are more amenable to mechanistic study. |
doi_str_mv | 10.1038/s41560-021-00925-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2598833634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598833634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-f7bb0cdb06b50945e07ea1ac51298bd06eb863d68fd5a8c44538a0308466b45d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKuA6-jNs5ml1EeFghtdh2QmU1tmmppkxP57o1PQlXC59yzOORc-hC4pXFPg-iYJKhUQYJQAVEwSfoImDKQmcynU6R99jmYpbQGAVYxJTSfI3oXBdZ7YHHpc22y7Q8oJ2zK4D52vh85GvO9sbkPscVn4zWcfw9rvfBgSDp-HIrH_CN2QN6GoEsoxHLs26QKdtbZLfna8U_T6cP-yWJLV8-PT4nZFaq5lJu3cOagbB8pJqIT0MPeW2lpSVmnXgPJOK94o3TbS6loIybUFDloo5YRs-BRdjb37GN4Hn7LZhiHuykvDZKU154qL4mKjq44hpehbs4-b3saDoWC-aZqRpik0zQ9Nw0uIj6FUzLu1j7_V_6S-AN2yeVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598833634</pqid></control><display><type>article</type><title>Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis</title><source>Springer Nature - Complete Springer Journals</source><creator>Bai, Lichen ; Hsu, Chia-Shuo ; Alexander, Duncan T. L. ; Chen, Hao Ming ; Hu, Xile</creator><creatorcontrib>Bai, Lichen ; Hsu, Chia-Shuo ; Alexander, Duncan T. L. ; Chen, Hao Ming ; Hu, Xile</creatorcontrib><description>The oxygen evolution reaction (OER) is an essential anode reaction for the generation of fuels through water splitting or CO
2
electroreduction. Mixed metal oxides containing Co, Fe or Ni have proved to be the most promising OER electrocatalysts in alkaline media. However, the active sites and reaction mechanisms of these catalysts are difficult to study due to their heterogeneous nature. Here we describe a general synthesis of Co-, Fe- and Ni-containing double-atom catalysts from their single-atom precursors via in situ electrochemical transformation. Characterization reveals molecule-like bimetallic active sites for these supported catalysts. For each catalyst, we propose a catalytic cycle; all exhibit bimetallic cooperation and follow a similar O–O bond-forming step. However, the mechanisms diverge in the site and source of OH
−
for O–O bond formation, as well as the order of proton and electron transfer. Our work demonstrates double-atom catalysts as an attractive platform for fundamental studies of heterogeneous OER electrocatalysts.
Oxygen evolution reaction (OER) catalysts often comprise multiple metal ions in various configurations, hampering mechanistic understanding of how catalysis proceeds. Now, researchers prepare a series of double-atom OER catalysts based on Ni, Fe and Co, which act as molecular-like models and are more amenable to mechanistic study.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-021-00925-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/161/886 ; 639/638/549/2263 ; 639/638/675 ; 639/638/77/885 ; 639/638/77/887 ; Bimetals ; Carbon dioxide ; Catalysis ; Catalysts ; Cobalt ; Economics and Management ; Electrocatalysts ; Electrochemical analysis ; Electrochemistry ; Electron transfer ; Energy ; Energy Policy ; Energy Storage ; Energy Systems ; Evolution ; Iron ; Metal ions ; Metal oxides ; Microscopy ; Molecular modelling ; Nanoparticles ; Nickel ; Oxidation ; Oxygen ; Oxygen evolution reactions ; Reaction mechanisms ; Renewable and Green Energy ; Voltammetry ; Water splitting</subject><ispartof>Nature energy, 2021-11, Vol.6 (11), p.1054-1066</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-f7bb0cdb06b50945e07ea1ac51298bd06eb863d68fd5a8c44538a0308466b45d3</citedby><cites>FETCH-LOGICAL-c385t-f7bb0cdb06b50945e07ea1ac51298bd06eb863d68fd5a8c44538a0308466b45d3</cites><orcidid>0000-0001-8335-1196 ; 0000-0003-4350-8587 ; 0000-0002-7480-9940 ; 0000-0002-7767-8413 ; 0000-0003-1452-6129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41560-021-00925-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41560-021-00925-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Bai, Lichen</creatorcontrib><creatorcontrib>Hsu, Chia-Shuo</creatorcontrib><creatorcontrib>Alexander, Duncan T. L.</creatorcontrib><creatorcontrib>Chen, Hao Ming</creatorcontrib><creatorcontrib>Hu, Xile</creatorcontrib><title>Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>The oxygen evolution reaction (OER) is an essential anode reaction for the generation of fuels through water splitting or CO
2
electroreduction. Mixed metal oxides containing Co, Fe or Ni have proved to be the most promising OER electrocatalysts in alkaline media. However, the active sites and reaction mechanisms of these catalysts are difficult to study due to their heterogeneous nature. Here we describe a general synthesis of Co-, Fe- and Ni-containing double-atom catalysts from their single-atom precursors via in situ electrochemical transformation. Characterization reveals molecule-like bimetallic active sites for these supported catalysts. For each catalyst, we propose a catalytic cycle; all exhibit bimetallic cooperation and follow a similar O–O bond-forming step. However, the mechanisms diverge in the site and source of OH
−
for O–O bond formation, as well as the order of proton and electron transfer. Our work demonstrates double-atom catalysts as an attractive platform for fundamental studies of heterogeneous OER electrocatalysts.
Oxygen evolution reaction (OER) catalysts often comprise multiple metal ions in various configurations, hampering mechanistic understanding of how catalysis proceeds. Now, researchers prepare a series of double-atom OER catalysts based on Ni, Fe and Co, which act as molecular-like models and are more amenable to mechanistic study.</description><subject>639/638/161/886</subject><subject>639/638/549/2263</subject><subject>639/638/675</subject><subject>639/638/77/885</subject><subject>639/638/77/887</subject><subject>Bimetals</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cobalt</subject><subject>Economics and Management</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Energy</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Evolution</subject><subject>Iron</subject><subject>Metal ions</subject><subject>Metal oxides</subject><subject>Microscopy</subject><subject>Molecular modelling</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>Reaction mechanisms</subject><subject>Renewable and Green Energy</subject><subject>Voltammetry</subject><subject>Water splitting</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWGr_gKuA6-jNs5ml1EeFghtdh2QmU1tmmppkxP57o1PQlXC59yzOORc-hC4pXFPg-iYJKhUQYJQAVEwSfoImDKQmcynU6R99jmYpbQGAVYxJTSfI3oXBdZ7YHHpc22y7Q8oJ2zK4D52vh85GvO9sbkPscVn4zWcfw9rvfBgSDp-HIrH_CN2QN6GoEsoxHLs26QKdtbZLfna8U_T6cP-yWJLV8-PT4nZFaq5lJu3cOagbB8pJqIT0MPeW2lpSVmnXgPJOK94o3TbS6loIybUFDloo5YRs-BRdjb37GN4Hn7LZhiHuykvDZKU154qL4mKjq44hpehbs4-b3saDoWC-aZqRpik0zQ9Nw0uIj6FUzLu1j7_V_6S-AN2yeVA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Bai, Lichen</creator><creator>Hsu, Chia-Shuo</creator><creator>Alexander, Duncan T. L.</creator><creator>Chen, Hao Ming</creator><creator>Hu, Xile</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8335-1196</orcidid><orcidid>https://orcid.org/0000-0003-4350-8587</orcidid><orcidid>https://orcid.org/0000-0002-7480-9940</orcidid><orcidid>https://orcid.org/0000-0002-7767-8413</orcidid><orcidid>https://orcid.org/0000-0003-1452-6129</orcidid></search><sort><creationdate>20211101</creationdate><title>Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis</title><author>Bai, Lichen ; Hsu, Chia-Shuo ; Alexander, Duncan T. L. ; Chen, Hao Ming ; Hu, Xile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-f7bb0cdb06b50945e07ea1ac51298bd06eb863d68fd5a8c44538a0308466b45d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/161/886</topic><topic>639/638/549/2263</topic><topic>639/638/675</topic><topic>639/638/77/885</topic><topic>639/638/77/887</topic><topic>Bimetals</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cobalt</topic><topic>Economics and Management</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Energy</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Evolution</topic><topic>Iron</topic><topic>Metal ions</topic><topic>Metal oxides</topic><topic>Microscopy</topic><topic>Molecular modelling</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>Reaction mechanisms</topic><topic>Renewable and Green Energy</topic><topic>Voltammetry</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Lichen</creatorcontrib><creatorcontrib>Hsu, Chia-Shuo</creatorcontrib><creatorcontrib>Alexander, Duncan T. L.</creatorcontrib><creatorcontrib>Chen, Hao Ming</creatorcontrib><creatorcontrib>Hu, Xile</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Lichen</au><au>Hsu, Chia-Shuo</au><au>Alexander, Duncan T. L.</au><au>Chen, Hao Ming</au><au>Hu, Xile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>6</volume><issue>11</issue><spage>1054</spage><epage>1066</epage><pages>1054-1066</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>The oxygen evolution reaction (OER) is an essential anode reaction for the generation of fuels through water splitting or CO
2
electroreduction. Mixed metal oxides containing Co, Fe or Ni have proved to be the most promising OER electrocatalysts in alkaline media. However, the active sites and reaction mechanisms of these catalysts are difficult to study due to their heterogeneous nature. Here we describe a general synthesis of Co-, Fe- and Ni-containing double-atom catalysts from their single-atom precursors via in situ electrochemical transformation. Characterization reveals molecule-like bimetallic active sites for these supported catalysts. For each catalyst, we propose a catalytic cycle; all exhibit bimetallic cooperation and follow a similar O–O bond-forming step. However, the mechanisms diverge in the site and source of OH
−
for O–O bond formation, as well as the order of proton and electron transfer. Our work demonstrates double-atom catalysts as an attractive platform for fundamental studies of heterogeneous OER electrocatalysts.
Oxygen evolution reaction (OER) catalysts often comprise multiple metal ions in various configurations, hampering mechanistic understanding of how catalysis proceeds. Now, researchers prepare a series of double-atom OER catalysts based on Ni, Fe and Co, which act as molecular-like models and are more amenable to mechanistic study.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-021-00925-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8335-1196</orcidid><orcidid>https://orcid.org/0000-0003-4350-8587</orcidid><orcidid>https://orcid.org/0000-0002-7480-9940</orcidid><orcidid>https://orcid.org/0000-0002-7767-8413</orcidid><orcidid>https://orcid.org/0000-0003-1452-6129</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-7546 |
ispartof | Nature energy, 2021-11, Vol.6 (11), p.1054-1066 |
issn | 2058-7546 2058-7546 |
language | eng |
recordid | cdi_proquest_journals_2598833634 |
source | Springer Nature - Complete Springer Journals |
subjects | 639/638/161/886 639/638/549/2263 639/638/675 639/638/77/885 639/638/77/887 Bimetals Carbon dioxide Catalysis Catalysts Cobalt Economics and Management Electrocatalysts Electrochemical analysis Electrochemistry Electron transfer Energy Energy Policy Energy Storage Energy Systems Evolution Iron Metal ions Metal oxides Microscopy Molecular modelling Nanoparticles Nickel Oxidation Oxygen Oxygen evolution reactions Reaction mechanisms Renewable and Green Energy Voltammetry Water splitting |
title | Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double-atom%20catalysts%20as%20a%20molecular%20platform%20for%20heterogeneous%20oxygen%20evolution%20electrocatalysis&rft.jtitle=Nature%20energy&rft.au=Bai,%20Lichen&rft.date=2021-11-01&rft.volume=6&rft.issue=11&rft.spage=1054&rft.epage=1066&rft.pages=1054-1066&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-021-00925-3&rft_dat=%3Cproquest_cross%3E2598833634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598833634&rft_id=info:pmid/&rfr_iscdi=true |