Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis

The oxygen evolution reaction (OER) is an essential anode reaction for the generation of fuels through water splitting or CO 2 electroreduction. Mixed metal oxides containing Co, Fe or Ni have proved to be the most promising OER electrocatalysts in alkaline media. However, the active sites and react...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature energy 2021-11, Vol.6 (11), p.1054-1066
Hauptverfasser: Bai, Lichen, Hsu, Chia-Shuo, Alexander, Duncan T. L., Chen, Hao Ming, Hu, Xile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1066
container_issue 11
container_start_page 1054
container_title Nature energy
container_volume 6
creator Bai, Lichen
Hsu, Chia-Shuo
Alexander, Duncan T. L.
Chen, Hao Ming
Hu, Xile
description The oxygen evolution reaction (OER) is an essential anode reaction for the generation of fuels through water splitting or CO 2 electroreduction. Mixed metal oxides containing Co, Fe or Ni have proved to be the most promising OER electrocatalysts in alkaline media. However, the active sites and reaction mechanisms of these catalysts are difficult to study due to their heterogeneous nature. Here we describe a general synthesis of Co-, Fe- and Ni-containing double-atom catalysts from their single-atom precursors via in situ electrochemical transformation. Characterization reveals molecule-like bimetallic active sites for these supported catalysts. For each catalyst, we propose a catalytic cycle; all exhibit bimetallic cooperation and follow a similar O–O bond-forming step. However, the mechanisms diverge in the site and source of OH − for O–O bond formation, as well as the order of proton and electron transfer. Our work demonstrates double-atom catalysts as an attractive platform for fundamental studies of heterogeneous OER electrocatalysts. Oxygen evolution reaction (OER) catalysts often comprise multiple metal ions in various configurations, hampering mechanistic understanding of how catalysis proceeds. Now, researchers prepare a series of double-atom OER catalysts based on Ni, Fe and Co, which act as molecular-like models and are more amenable to mechanistic study.
doi_str_mv 10.1038/s41560-021-00925-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2598833634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598833634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-f7bb0cdb06b50945e07ea1ac51298bd06eb863d68fd5a8c44538a0308466b45d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKuA6-jNs5ml1EeFghtdh2QmU1tmmppkxP57o1PQlXC59yzOORc-hC4pXFPg-iYJKhUQYJQAVEwSfoImDKQmcynU6R99jmYpbQGAVYxJTSfI3oXBdZ7YHHpc22y7Q8oJ2zK4D52vh85GvO9sbkPscVn4zWcfw9rvfBgSDp-HIrH_CN2QN6GoEsoxHLs26QKdtbZLfna8U_T6cP-yWJLV8-PT4nZFaq5lJu3cOagbB8pJqIT0MPeW2lpSVmnXgPJOK94o3TbS6loIybUFDloo5YRs-BRdjb37GN4Hn7LZhiHuykvDZKU154qL4mKjq44hpehbs4-b3saDoWC-aZqRpik0zQ9Nw0uIj6FUzLu1j7_V_6S-AN2yeVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598833634</pqid></control><display><type>article</type><title>Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis</title><source>Springer Nature - Complete Springer Journals</source><creator>Bai, Lichen ; Hsu, Chia-Shuo ; Alexander, Duncan T. L. ; Chen, Hao Ming ; Hu, Xile</creator><creatorcontrib>Bai, Lichen ; Hsu, Chia-Shuo ; Alexander, Duncan T. L. ; Chen, Hao Ming ; Hu, Xile</creatorcontrib><description>The oxygen evolution reaction (OER) is an essential anode reaction for the generation of fuels through water splitting or CO 2 electroreduction. Mixed metal oxides containing Co, Fe or Ni have proved to be the most promising OER electrocatalysts in alkaline media. However, the active sites and reaction mechanisms of these catalysts are difficult to study due to their heterogeneous nature. Here we describe a general synthesis of Co-, Fe- and Ni-containing double-atom catalysts from their single-atom precursors via in situ electrochemical transformation. Characterization reveals molecule-like bimetallic active sites for these supported catalysts. For each catalyst, we propose a catalytic cycle; all exhibit bimetallic cooperation and follow a similar O–O bond-forming step. However, the mechanisms diverge in the site and source of OH − for O–O bond formation, as well as the order of proton and electron transfer. Our work demonstrates double-atom catalysts as an attractive platform for fundamental studies of heterogeneous OER electrocatalysts. Oxygen evolution reaction (OER) catalysts often comprise multiple metal ions in various configurations, hampering mechanistic understanding of how catalysis proceeds. Now, researchers prepare a series of double-atom OER catalysts based on Ni, Fe and Co, which act as molecular-like models and are more amenable to mechanistic study.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-021-00925-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/161/886 ; 639/638/549/2263 ; 639/638/675 ; 639/638/77/885 ; 639/638/77/887 ; Bimetals ; Carbon dioxide ; Catalysis ; Catalysts ; Cobalt ; Economics and Management ; Electrocatalysts ; Electrochemical analysis ; Electrochemistry ; Electron transfer ; Energy ; Energy Policy ; Energy Storage ; Energy Systems ; Evolution ; Iron ; Metal ions ; Metal oxides ; Microscopy ; Molecular modelling ; Nanoparticles ; Nickel ; Oxidation ; Oxygen ; Oxygen evolution reactions ; Reaction mechanisms ; Renewable and Green Energy ; Voltammetry ; Water splitting</subject><ispartof>Nature energy, 2021-11, Vol.6 (11), p.1054-1066</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-f7bb0cdb06b50945e07ea1ac51298bd06eb863d68fd5a8c44538a0308466b45d3</citedby><cites>FETCH-LOGICAL-c385t-f7bb0cdb06b50945e07ea1ac51298bd06eb863d68fd5a8c44538a0308466b45d3</cites><orcidid>0000-0001-8335-1196 ; 0000-0003-4350-8587 ; 0000-0002-7480-9940 ; 0000-0002-7767-8413 ; 0000-0003-1452-6129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41560-021-00925-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41560-021-00925-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Bai, Lichen</creatorcontrib><creatorcontrib>Hsu, Chia-Shuo</creatorcontrib><creatorcontrib>Alexander, Duncan T. L.</creatorcontrib><creatorcontrib>Chen, Hao Ming</creatorcontrib><creatorcontrib>Hu, Xile</creatorcontrib><title>Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>The oxygen evolution reaction (OER) is an essential anode reaction for the generation of fuels through water splitting or CO 2 electroreduction. Mixed metal oxides containing Co, Fe or Ni have proved to be the most promising OER electrocatalysts in alkaline media. However, the active sites and reaction mechanisms of these catalysts are difficult to study due to their heterogeneous nature. Here we describe a general synthesis of Co-, Fe- and Ni-containing double-atom catalysts from their single-atom precursors via in situ electrochemical transformation. Characterization reveals molecule-like bimetallic active sites for these supported catalysts. For each catalyst, we propose a catalytic cycle; all exhibit bimetallic cooperation and follow a similar O–O bond-forming step. However, the mechanisms diverge in the site and source of OH − for O–O bond formation, as well as the order of proton and electron transfer. Our work demonstrates double-atom catalysts as an attractive platform for fundamental studies of heterogeneous OER electrocatalysts. Oxygen evolution reaction (OER) catalysts often comprise multiple metal ions in various configurations, hampering mechanistic understanding of how catalysis proceeds. Now, researchers prepare a series of double-atom OER catalysts based on Ni, Fe and Co, which act as molecular-like models and are more amenable to mechanistic study.</description><subject>639/638/161/886</subject><subject>639/638/549/2263</subject><subject>639/638/675</subject><subject>639/638/77/885</subject><subject>639/638/77/887</subject><subject>Bimetals</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cobalt</subject><subject>Economics and Management</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Energy</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Evolution</subject><subject>Iron</subject><subject>Metal ions</subject><subject>Metal oxides</subject><subject>Microscopy</subject><subject>Molecular modelling</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>Reaction mechanisms</subject><subject>Renewable and Green Energy</subject><subject>Voltammetry</subject><subject>Water splitting</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWGr_gKuA6-jNs5ml1EeFghtdh2QmU1tmmppkxP57o1PQlXC59yzOORc-hC4pXFPg-iYJKhUQYJQAVEwSfoImDKQmcynU6R99jmYpbQGAVYxJTSfI3oXBdZ7YHHpc22y7Q8oJ2zK4D52vh85GvO9sbkPscVn4zWcfw9rvfBgSDp-HIrH_CN2QN6GoEsoxHLs26QKdtbZLfna8U_T6cP-yWJLV8-PT4nZFaq5lJu3cOagbB8pJqIT0MPeW2lpSVmnXgPJOK94o3TbS6loIybUFDloo5YRs-BRdjb37GN4Hn7LZhiHuykvDZKU154qL4mKjq44hpehbs4-b3saDoWC-aZqRpik0zQ9Nw0uIj6FUzLu1j7_V_6S-AN2yeVA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Bai, Lichen</creator><creator>Hsu, Chia-Shuo</creator><creator>Alexander, Duncan T. L.</creator><creator>Chen, Hao Ming</creator><creator>Hu, Xile</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8335-1196</orcidid><orcidid>https://orcid.org/0000-0003-4350-8587</orcidid><orcidid>https://orcid.org/0000-0002-7480-9940</orcidid><orcidid>https://orcid.org/0000-0002-7767-8413</orcidid><orcidid>https://orcid.org/0000-0003-1452-6129</orcidid></search><sort><creationdate>20211101</creationdate><title>Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis</title><author>Bai, Lichen ; Hsu, Chia-Shuo ; Alexander, Duncan T. L. ; Chen, Hao Ming ; Hu, Xile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-f7bb0cdb06b50945e07ea1ac51298bd06eb863d68fd5a8c44538a0308466b45d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/161/886</topic><topic>639/638/549/2263</topic><topic>639/638/675</topic><topic>639/638/77/885</topic><topic>639/638/77/887</topic><topic>Bimetals</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cobalt</topic><topic>Economics and Management</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Energy</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Evolution</topic><topic>Iron</topic><topic>Metal ions</topic><topic>Metal oxides</topic><topic>Microscopy</topic><topic>Molecular modelling</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>Reaction mechanisms</topic><topic>Renewable and Green Energy</topic><topic>Voltammetry</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Lichen</creatorcontrib><creatorcontrib>Hsu, Chia-Shuo</creatorcontrib><creatorcontrib>Alexander, Duncan T. L.</creatorcontrib><creatorcontrib>Chen, Hao Ming</creatorcontrib><creatorcontrib>Hu, Xile</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Lichen</au><au>Hsu, Chia-Shuo</au><au>Alexander, Duncan T. L.</au><au>Chen, Hao Ming</au><au>Hu, Xile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>6</volume><issue>11</issue><spage>1054</spage><epage>1066</epage><pages>1054-1066</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>The oxygen evolution reaction (OER) is an essential anode reaction for the generation of fuels through water splitting or CO 2 electroreduction. Mixed metal oxides containing Co, Fe or Ni have proved to be the most promising OER electrocatalysts in alkaline media. However, the active sites and reaction mechanisms of these catalysts are difficult to study due to their heterogeneous nature. Here we describe a general synthesis of Co-, Fe- and Ni-containing double-atom catalysts from their single-atom precursors via in situ electrochemical transformation. Characterization reveals molecule-like bimetallic active sites for these supported catalysts. For each catalyst, we propose a catalytic cycle; all exhibit bimetallic cooperation and follow a similar O–O bond-forming step. However, the mechanisms diverge in the site and source of OH − for O–O bond formation, as well as the order of proton and electron transfer. Our work demonstrates double-atom catalysts as an attractive platform for fundamental studies of heterogeneous OER electrocatalysts. Oxygen evolution reaction (OER) catalysts often comprise multiple metal ions in various configurations, hampering mechanistic understanding of how catalysis proceeds. Now, researchers prepare a series of double-atom OER catalysts based on Ni, Fe and Co, which act as molecular-like models and are more amenable to mechanistic study.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-021-00925-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8335-1196</orcidid><orcidid>https://orcid.org/0000-0003-4350-8587</orcidid><orcidid>https://orcid.org/0000-0002-7480-9940</orcidid><orcidid>https://orcid.org/0000-0002-7767-8413</orcidid><orcidid>https://orcid.org/0000-0003-1452-6129</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2058-7546
ispartof Nature energy, 2021-11, Vol.6 (11), p.1054-1066
issn 2058-7546
2058-7546
language eng
recordid cdi_proquest_journals_2598833634
source Springer Nature - Complete Springer Journals
subjects 639/638/161/886
639/638/549/2263
639/638/675
639/638/77/885
639/638/77/887
Bimetals
Carbon dioxide
Catalysis
Catalysts
Cobalt
Economics and Management
Electrocatalysts
Electrochemical analysis
Electrochemistry
Electron transfer
Energy
Energy Policy
Energy Storage
Energy Systems
Evolution
Iron
Metal ions
Metal oxides
Microscopy
Molecular modelling
Nanoparticles
Nickel
Oxidation
Oxygen
Oxygen evolution reactions
Reaction mechanisms
Renewable and Green Energy
Voltammetry
Water splitting
title Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double-atom%20catalysts%20as%20a%20molecular%20platform%20for%20heterogeneous%20oxygen%20evolution%20electrocatalysis&rft.jtitle=Nature%20energy&rft.au=Bai,%20Lichen&rft.date=2021-11-01&rft.volume=6&rft.issue=11&rft.spage=1054&rft.epage=1066&rft.pages=1054-1066&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-021-00925-3&rft_dat=%3Cproquest_cross%3E2598833634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598833634&rft_id=info:pmid/&rfr_iscdi=true