Disordered photonics behavior from terahertz to ultraviolet of a three-dimensional graphene network
The diffusion of light by random materials is a general phenomenon that appears in many different systems, spanning from colloidal suspension in liquid crystals to disordered metal sponges and paper composed of random fibers. Random scattering is also a key element behind mimicry of several animals,...
Gespeichert in:
Veröffentlicht in: | NPG Asia materials 2021-11, Vol.13 (1), Article 73 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | NPG Asia materials |
container_volume | 13 |
creator | Tomarchio, Luca Macis, Salvatore D’Arco, Annalisa Mou, Sen Grilli, Antonio Romani, Martina Guidi, Mariangela Cestelli Hu, Kailong Kukunuri, Suresh Jeong, Samuel Marcelli, Augusto Ito, Yoshikazu Lupi, Stefano |
description | The diffusion of light by random materials is a general phenomenon that appears in many different systems, spanning from colloidal suspension in liquid crystals to disordered metal sponges and paper composed of random fibers. Random scattering is also a key element behind mimicry of several animals, such as white beetles and chameleons. Here, random scattering is related to micro and nanosized spatial structures affecting a broad electromagnetic region. In this work, we have investigated how random scattering modulates the optical properties, from terahertz to ultraviolet light, of a novel functional material, i.e., a three-dimensional graphene (3D Graphene) network based on interconnected high-quality two-dimensional graphene layers. Here, random scattering generates a high-frequency pass-filter behavior. The optical properties of these graphene structures bridge the nanoworld into the macroscopic world, paving the way for their use in novel optoelectronic devices.
We investigate how random scattering modulates the optical properties, from terahertz to ultraviolet, of a three-dimensional graphene network based on interconnected high-quality 2-Dimensional graphene layers. We show how the connectivity and morphology of these materials allow a broadband interaction with light. The 3D graphene networks behave like a high-pass optical filter due to spatially multiscale random scatterers, corresponding to pores and graphene branches in the 3D network. We develop a model based on the Radiative Transfer theory describing the interaction of the network with light, from which we estimate the photon scattering mean free path. |
doi_str_mv | 10.1038/s41427-021-00341-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2598833419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598833419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-1def8710d43b87b1697f0b93e7c94c3dc07fbe04a6eadc1281db7b5c338363a53</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz-AU8Bz9WkSZv0KOsnLHjRc0iT6bZrt1knWUV_vV0revM0A_O8L8NDyBlnF5wJfRkll7nKWM4zxoTkWXVAZlxrmUlWqMPfXVbH5DTGNWOMl6XUhZwRd93FgB4QPN22IYWhc5HW0Nq3LiBtMGxoArQtYPqkKdBdn3B_6yHR0FBLU4sAme82MMQuDLanK7TbFgagA6T3gC8n5KixfYTTnzknz7c3T4v7bPl497C4WmZO5lXKuIdGK868FLVWNS8r1bC6EqBcJZ3wjqmmBiZtCdY7nmvua1UXTggtSmELMSfnU-8Ww-sOYjLrsMPxo2jyotJajG6qkconymGIEaExW-w2Fj8MZ2bv00w-zejTfPs0-5CYQnGEhxXgX_U_qS8B13oo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598833419</pqid></control><display><type>article</type><title>Disordered photonics behavior from terahertz to ultraviolet of a three-dimensional graphene network</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Tomarchio, Luca ; Macis, Salvatore ; D’Arco, Annalisa ; Mou, Sen ; Grilli, Antonio ; Romani, Martina ; Guidi, Mariangela Cestelli ; Hu, Kailong ; Kukunuri, Suresh ; Jeong, Samuel ; Marcelli, Augusto ; Ito, Yoshikazu ; Lupi, Stefano</creator><creatorcontrib>Tomarchio, Luca ; Macis, Salvatore ; D’Arco, Annalisa ; Mou, Sen ; Grilli, Antonio ; Romani, Martina ; Guidi, Mariangela Cestelli ; Hu, Kailong ; Kukunuri, Suresh ; Jeong, Samuel ; Marcelli, Augusto ; Ito, Yoshikazu ; Lupi, Stefano</creatorcontrib><description>The diffusion of light by random materials is a general phenomenon that appears in many different systems, spanning from colloidal suspension in liquid crystals to disordered metal sponges and paper composed of random fibers. Random scattering is also a key element behind mimicry of several animals, such as white beetles and chameleons. Here, random scattering is related to micro and nanosized spatial structures affecting a broad electromagnetic region. In this work, we have investigated how random scattering modulates the optical properties, from terahertz to ultraviolet light, of a novel functional material, i.e., a three-dimensional graphene (3D Graphene) network based on interconnected high-quality two-dimensional graphene layers. Here, random scattering generates a high-frequency pass-filter behavior. The optical properties of these graphene structures bridge the nanoworld into the macroscopic world, paving the way for their use in novel optoelectronic devices.
We investigate how random scattering modulates the optical properties, from terahertz to ultraviolet, of a three-dimensional graphene network based on interconnected high-quality 2-Dimensional graphene layers. We show how the connectivity and morphology of these materials allow a broadband interaction with light. The 3D graphene networks behave like a high-pass optical filter due to spatially multiscale random scatterers, corresponding to pores and graphene branches in the 3D network. We develop a model based on the Radiative Transfer theory describing the interaction of the network with light, from which we estimate the photon scattering mean free path.</description><identifier>ISSN: 1884-4049</identifier><identifier>EISSN: 1884-4057</identifier><identifier>DOI: 10.1038/s41427-021-00341-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399 ; 639/925 ; Biomaterials ; Bridges ; Broadband ; Chemistry and Materials Science ; Energy Systems ; Functional materials ; Graphene ; Liquid crystals ; Materials Science ; Mimicry ; Morphology ; Optical and Electronic Materials ; Optical filters ; Optical properties ; Optoelectronic devices ; Photon scatter ; Radiative transfer ; Scattering ; Structural Materials ; Surface and Interface Science ; Terahertz frequencies ; Thin Films ; Ultraviolet radiation</subject><ispartof>NPG Asia materials, 2021-11, Vol.13 (1), Article 73</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-1def8710d43b87b1697f0b93e7c94c3dc07fbe04a6eadc1281db7b5c338363a53</citedby><cites>FETCH-LOGICAL-c429t-1def8710d43b87b1697f0b93e7c94c3dc07fbe04a6eadc1281db7b5c338363a53</cites><orcidid>0000-0001-7002-337X ; 0000-0001-7990-5117 ; 0000-0003-2231-7271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41427-021-00341-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41427-021-00341-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,27907,27908,41103,42172,51559</link.rule.ids></links><search><creatorcontrib>Tomarchio, Luca</creatorcontrib><creatorcontrib>Macis, Salvatore</creatorcontrib><creatorcontrib>D’Arco, Annalisa</creatorcontrib><creatorcontrib>Mou, Sen</creatorcontrib><creatorcontrib>Grilli, Antonio</creatorcontrib><creatorcontrib>Romani, Martina</creatorcontrib><creatorcontrib>Guidi, Mariangela Cestelli</creatorcontrib><creatorcontrib>Hu, Kailong</creatorcontrib><creatorcontrib>Kukunuri, Suresh</creatorcontrib><creatorcontrib>Jeong, Samuel</creatorcontrib><creatorcontrib>Marcelli, Augusto</creatorcontrib><creatorcontrib>Ito, Yoshikazu</creatorcontrib><creatorcontrib>Lupi, Stefano</creatorcontrib><title>Disordered photonics behavior from terahertz to ultraviolet of a three-dimensional graphene network</title><title>NPG Asia materials</title><addtitle>NPG Asia Mater</addtitle><description>The diffusion of light by random materials is a general phenomenon that appears in many different systems, spanning from colloidal suspension in liquid crystals to disordered metal sponges and paper composed of random fibers. Random scattering is also a key element behind mimicry of several animals, such as white beetles and chameleons. Here, random scattering is related to micro and nanosized spatial structures affecting a broad electromagnetic region. In this work, we have investigated how random scattering modulates the optical properties, from terahertz to ultraviolet light, of a novel functional material, i.e., a three-dimensional graphene (3D Graphene) network based on interconnected high-quality two-dimensional graphene layers. Here, random scattering generates a high-frequency pass-filter behavior. The optical properties of these graphene structures bridge the nanoworld into the macroscopic world, paving the way for their use in novel optoelectronic devices.
We investigate how random scattering modulates the optical properties, from terahertz to ultraviolet, of a three-dimensional graphene network based on interconnected high-quality 2-Dimensional graphene layers. We show how the connectivity and morphology of these materials allow a broadband interaction with light. The 3D graphene networks behave like a high-pass optical filter due to spatially multiscale random scatterers, corresponding to pores and graphene branches in the 3D network. We develop a model based on the Radiative Transfer theory describing the interaction of the network with light, from which we estimate the photon scattering mean free path.</description><subject>639/624/399</subject><subject>639/925</subject><subject>Biomaterials</subject><subject>Bridges</subject><subject>Broadband</subject><subject>Chemistry and Materials Science</subject><subject>Energy Systems</subject><subject>Functional materials</subject><subject>Graphene</subject><subject>Liquid crystals</subject><subject>Materials Science</subject><subject>Mimicry</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>Optical filters</subject><subject>Optical properties</subject><subject>Optoelectronic devices</subject><subject>Photon scatter</subject><subject>Radiative transfer</subject><subject>Scattering</subject><subject>Structural Materials</subject><subject>Surface and Interface Science</subject><subject>Terahertz frequencies</subject><subject>Thin Films</subject><subject>Ultraviolet radiation</subject><issn>1884-4049</issn><issn>1884-4057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouKz-AU8Bz9WkSZv0KOsnLHjRc0iT6bZrt1knWUV_vV0revM0A_O8L8NDyBlnF5wJfRkll7nKWM4zxoTkWXVAZlxrmUlWqMPfXVbH5DTGNWOMl6XUhZwRd93FgB4QPN22IYWhc5HW0Nq3LiBtMGxoArQtYPqkKdBdn3B_6yHR0FBLU4sAme82MMQuDLanK7TbFgagA6T3gC8n5KixfYTTnzknz7c3T4v7bPl497C4WmZO5lXKuIdGK868FLVWNS8r1bC6EqBcJZ3wjqmmBiZtCdY7nmvua1UXTggtSmELMSfnU-8Ww-sOYjLrsMPxo2jyotJajG6qkconymGIEaExW-w2Fj8MZ2bv00w-zejTfPs0-5CYQnGEhxXgX_U_qS8B13oo</recordid><startdate>20211119</startdate><enddate>20211119</enddate><creator>Tomarchio, Luca</creator><creator>Macis, Salvatore</creator><creator>D’Arco, Annalisa</creator><creator>Mou, Sen</creator><creator>Grilli, Antonio</creator><creator>Romani, Martina</creator><creator>Guidi, Mariangela Cestelli</creator><creator>Hu, Kailong</creator><creator>Kukunuri, Suresh</creator><creator>Jeong, Samuel</creator><creator>Marcelli, Augusto</creator><creator>Ito, Yoshikazu</creator><creator>Lupi, Stefano</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7002-337X</orcidid><orcidid>https://orcid.org/0000-0001-7990-5117</orcidid><orcidid>https://orcid.org/0000-0003-2231-7271</orcidid></search><sort><creationdate>20211119</creationdate><title>Disordered photonics behavior from terahertz to ultraviolet of a three-dimensional graphene network</title><author>Tomarchio, Luca ; Macis, Salvatore ; D’Arco, Annalisa ; Mou, Sen ; Grilli, Antonio ; Romani, Martina ; Guidi, Mariangela Cestelli ; Hu, Kailong ; Kukunuri, Suresh ; Jeong, Samuel ; Marcelli, Augusto ; Ito, Yoshikazu ; Lupi, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-1def8710d43b87b1697f0b93e7c94c3dc07fbe04a6eadc1281db7b5c338363a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/624/399</topic><topic>639/925</topic><topic>Biomaterials</topic><topic>Bridges</topic><topic>Broadband</topic><topic>Chemistry and Materials Science</topic><topic>Energy Systems</topic><topic>Functional materials</topic><topic>Graphene</topic><topic>Liquid crystals</topic><topic>Materials Science</topic><topic>Mimicry</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>Optical filters</topic><topic>Optical properties</topic><topic>Optoelectronic devices</topic><topic>Photon scatter</topic><topic>Radiative transfer</topic><topic>Scattering</topic><topic>Structural Materials</topic><topic>Surface and Interface Science</topic><topic>Terahertz frequencies</topic><topic>Thin Films</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomarchio, Luca</creatorcontrib><creatorcontrib>Macis, Salvatore</creatorcontrib><creatorcontrib>D’Arco, Annalisa</creatorcontrib><creatorcontrib>Mou, Sen</creatorcontrib><creatorcontrib>Grilli, Antonio</creatorcontrib><creatorcontrib>Romani, Martina</creatorcontrib><creatorcontrib>Guidi, Mariangela Cestelli</creatorcontrib><creatorcontrib>Hu, Kailong</creatorcontrib><creatorcontrib>Kukunuri, Suresh</creatorcontrib><creatorcontrib>Jeong, Samuel</creatorcontrib><creatorcontrib>Marcelli, Augusto</creatorcontrib><creatorcontrib>Ito, Yoshikazu</creatorcontrib><creatorcontrib>Lupi, Stefano</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>NPG Asia materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomarchio, Luca</au><au>Macis, Salvatore</au><au>D’Arco, Annalisa</au><au>Mou, Sen</au><au>Grilli, Antonio</au><au>Romani, Martina</au><au>Guidi, Mariangela Cestelli</au><au>Hu, Kailong</au><au>Kukunuri, Suresh</au><au>Jeong, Samuel</au><au>Marcelli, Augusto</au><au>Ito, Yoshikazu</au><au>Lupi, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disordered photonics behavior from terahertz to ultraviolet of a three-dimensional graphene network</atitle><jtitle>NPG Asia materials</jtitle><stitle>NPG Asia Mater</stitle><date>2021-11-19</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><artnum>73</artnum><issn>1884-4049</issn><eissn>1884-4057</eissn><abstract>The diffusion of light by random materials is a general phenomenon that appears in many different systems, spanning from colloidal suspension in liquid crystals to disordered metal sponges and paper composed of random fibers. Random scattering is also a key element behind mimicry of several animals, such as white beetles and chameleons. Here, random scattering is related to micro and nanosized spatial structures affecting a broad electromagnetic region. In this work, we have investigated how random scattering modulates the optical properties, from terahertz to ultraviolet light, of a novel functional material, i.e., a three-dimensional graphene (3D Graphene) network based on interconnected high-quality two-dimensional graphene layers. Here, random scattering generates a high-frequency pass-filter behavior. The optical properties of these graphene structures bridge the nanoworld into the macroscopic world, paving the way for their use in novel optoelectronic devices.
We investigate how random scattering modulates the optical properties, from terahertz to ultraviolet, of a three-dimensional graphene network based on interconnected high-quality 2-Dimensional graphene layers. We show how the connectivity and morphology of these materials allow a broadband interaction with light. The 3D graphene networks behave like a high-pass optical filter due to spatially multiscale random scatterers, corresponding to pores and graphene branches in the 3D network. We develop a model based on the Radiative Transfer theory describing the interaction of the network with light, from which we estimate the photon scattering mean free path.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41427-021-00341-9</doi><orcidid>https://orcid.org/0000-0001-7002-337X</orcidid><orcidid>https://orcid.org/0000-0001-7990-5117</orcidid><orcidid>https://orcid.org/0000-0003-2231-7271</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1884-4049 |
ispartof | NPG Asia materials, 2021-11, Vol.13 (1), Article 73 |
issn | 1884-4049 1884-4057 |
language | eng |
recordid | cdi_proquest_journals_2598833419 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | 639/624/399 639/925 Biomaterials Bridges Broadband Chemistry and Materials Science Energy Systems Functional materials Graphene Liquid crystals Materials Science Mimicry Morphology Optical and Electronic Materials Optical filters Optical properties Optoelectronic devices Photon scatter Radiative transfer Scattering Structural Materials Surface and Interface Science Terahertz frequencies Thin Films Ultraviolet radiation |
title | Disordered photonics behavior from terahertz to ultraviolet of a three-dimensional graphene network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disordered%20photonics%20behavior%20from%20terahertz%20to%20ultraviolet%20of%20a%20three-dimensional%20graphene%20network&rft.jtitle=NPG%20Asia%20materials&rft.au=Tomarchio,%20Luca&rft.date=2021-11-19&rft.volume=13&rft.issue=1&rft.artnum=73&rft.issn=1884-4049&rft.eissn=1884-4057&rft_id=info:doi/10.1038/s41427-021-00341-9&rft_dat=%3Cproquest_cross%3E2598833419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598833419&rft_id=info:pmid/&rfr_iscdi=true |