Disordered photonics behavior from terahertz to ultraviolet of a three-dimensional graphene network

The diffusion of light by random materials is a general phenomenon that appears in many different systems, spanning from colloidal suspension in liquid crystals to disordered metal sponges and paper composed of random fibers. Random scattering is also a key element behind mimicry of several animals,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPG Asia materials 2021-11, Vol.13 (1), Article 73
Hauptverfasser: Tomarchio, Luca, Macis, Salvatore, D’Arco, Annalisa, Mou, Sen, Grilli, Antonio, Romani, Martina, Guidi, Mariangela Cestelli, Hu, Kailong, Kukunuri, Suresh, Jeong, Samuel, Marcelli, Augusto, Ito, Yoshikazu, Lupi, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title NPG Asia materials
container_volume 13
creator Tomarchio, Luca
Macis, Salvatore
D’Arco, Annalisa
Mou, Sen
Grilli, Antonio
Romani, Martina
Guidi, Mariangela Cestelli
Hu, Kailong
Kukunuri, Suresh
Jeong, Samuel
Marcelli, Augusto
Ito, Yoshikazu
Lupi, Stefano
description The diffusion of light by random materials is a general phenomenon that appears in many different systems, spanning from colloidal suspension in liquid crystals to disordered metal sponges and paper composed of random fibers. Random scattering is also a key element behind mimicry of several animals, such as white beetles and chameleons. Here, random scattering is related to micro and nanosized spatial structures affecting a broad electromagnetic region. In this work, we have investigated how random scattering modulates the optical properties, from terahertz to ultraviolet light, of a novel functional material, i.e., a three-dimensional graphene (3D Graphene) network based on interconnected high-quality two-dimensional graphene layers. Here, random scattering generates a high-frequency pass-filter behavior. The optical properties of these graphene structures bridge the nanoworld into the macroscopic world, paving the way for their use in novel optoelectronic devices. We investigate how random scattering modulates the optical properties, from terahertz to ultraviolet, of a three-dimensional graphene network based on interconnected high-quality 2-Dimensional graphene layers. We show how the connectivity and morphology of these materials allow a broadband interaction with light. The 3D graphene networks behave like a high-pass optical filter due to spatially multiscale random scatterers, corresponding to pores and graphene branches in the 3D network. We develop a model based on the Radiative Transfer theory describing the interaction of the network with light, from which we estimate the photon scattering mean free path.
doi_str_mv 10.1038/s41427-021-00341-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2598833419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598833419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-1def8710d43b87b1697f0b93e7c94c3dc07fbe04a6eadc1281db7b5c338363a53</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz-AU8Bz9WkSZv0KOsnLHjRc0iT6bZrt1knWUV_vV0revM0A_O8L8NDyBlnF5wJfRkll7nKWM4zxoTkWXVAZlxrmUlWqMPfXVbH5DTGNWOMl6XUhZwRd93FgB4QPN22IYWhc5HW0Nq3LiBtMGxoArQtYPqkKdBdn3B_6yHR0FBLU4sAme82MMQuDLanK7TbFgagA6T3gC8n5KixfYTTnzknz7c3T4v7bPl497C4WmZO5lXKuIdGK868FLVWNS8r1bC6EqBcJZ3wjqmmBiZtCdY7nmvua1UXTggtSmELMSfnU-8Ww-sOYjLrsMPxo2jyotJajG6qkconymGIEaExW-w2Fj8MZ2bv00w-zejTfPs0-5CYQnGEhxXgX_U_qS8B13oo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598833419</pqid></control><display><type>article</type><title>Disordered photonics behavior from terahertz to ultraviolet of a three-dimensional graphene network</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Tomarchio, Luca ; Macis, Salvatore ; D’Arco, Annalisa ; Mou, Sen ; Grilli, Antonio ; Romani, Martina ; Guidi, Mariangela Cestelli ; Hu, Kailong ; Kukunuri, Suresh ; Jeong, Samuel ; Marcelli, Augusto ; Ito, Yoshikazu ; Lupi, Stefano</creator><creatorcontrib>Tomarchio, Luca ; Macis, Salvatore ; D’Arco, Annalisa ; Mou, Sen ; Grilli, Antonio ; Romani, Martina ; Guidi, Mariangela Cestelli ; Hu, Kailong ; Kukunuri, Suresh ; Jeong, Samuel ; Marcelli, Augusto ; Ito, Yoshikazu ; Lupi, Stefano</creatorcontrib><description>The diffusion of light by random materials is a general phenomenon that appears in many different systems, spanning from colloidal suspension in liquid crystals to disordered metal sponges and paper composed of random fibers. Random scattering is also a key element behind mimicry of several animals, such as white beetles and chameleons. Here, random scattering is related to micro and nanosized spatial structures affecting a broad electromagnetic region. In this work, we have investigated how random scattering modulates the optical properties, from terahertz to ultraviolet light, of a novel functional material, i.e., a three-dimensional graphene (3D Graphene) network based on interconnected high-quality two-dimensional graphene layers. Here, random scattering generates a high-frequency pass-filter behavior. The optical properties of these graphene structures bridge the nanoworld into the macroscopic world, paving the way for their use in novel optoelectronic devices. We investigate how random scattering modulates the optical properties, from terahertz to ultraviolet, of a three-dimensional graphene network based on interconnected high-quality 2-Dimensional graphene layers. We show how the connectivity and morphology of these materials allow a broadband interaction with light. The 3D graphene networks behave like a high-pass optical filter due to spatially multiscale random scatterers, corresponding to pores and graphene branches in the 3D network. We develop a model based on the Radiative Transfer theory describing the interaction of the network with light, from which we estimate the photon scattering mean free path.</description><identifier>ISSN: 1884-4049</identifier><identifier>EISSN: 1884-4057</identifier><identifier>DOI: 10.1038/s41427-021-00341-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399 ; 639/925 ; Biomaterials ; Bridges ; Broadband ; Chemistry and Materials Science ; Energy Systems ; Functional materials ; Graphene ; Liquid crystals ; Materials Science ; Mimicry ; Morphology ; Optical and Electronic Materials ; Optical filters ; Optical properties ; Optoelectronic devices ; Photon scatter ; Radiative transfer ; Scattering ; Structural Materials ; Surface and Interface Science ; Terahertz frequencies ; Thin Films ; Ultraviolet radiation</subject><ispartof>NPG Asia materials, 2021-11, Vol.13 (1), Article 73</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-1def8710d43b87b1697f0b93e7c94c3dc07fbe04a6eadc1281db7b5c338363a53</citedby><cites>FETCH-LOGICAL-c429t-1def8710d43b87b1697f0b93e7c94c3dc07fbe04a6eadc1281db7b5c338363a53</cites><orcidid>0000-0001-7002-337X ; 0000-0001-7990-5117 ; 0000-0003-2231-7271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41427-021-00341-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41427-021-00341-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,27907,27908,41103,42172,51559</link.rule.ids></links><search><creatorcontrib>Tomarchio, Luca</creatorcontrib><creatorcontrib>Macis, Salvatore</creatorcontrib><creatorcontrib>D’Arco, Annalisa</creatorcontrib><creatorcontrib>Mou, Sen</creatorcontrib><creatorcontrib>Grilli, Antonio</creatorcontrib><creatorcontrib>Romani, Martina</creatorcontrib><creatorcontrib>Guidi, Mariangela Cestelli</creatorcontrib><creatorcontrib>Hu, Kailong</creatorcontrib><creatorcontrib>Kukunuri, Suresh</creatorcontrib><creatorcontrib>Jeong, Samuel</creatorcontrib><creatorcontrib>Marcelli, Augusto</creatorcontrib><creatorcontrib>Ito, Yoshikazu</creatorcontrib><creatorcontrib>Lupi, Stefano</creatorcontrib><title>Disordered photonics behavior from terahertz to ultraviolet of a three-dimensional graphene network</title><title>NPG Asia materials</title><addtitle>NPG Asia Mater</addtitle><description>The diffusion of light by random materials is a general phenomenon that appears in many different systems, spanning from colloidal suspension in liquid crystals to disordered metal sponges and paper composed of random fibers. Random scattering is also a key element behind mimicry of several animals, such as white beetles and chameleons. Here, random scattering is related to micro and nanosized spatial structures affecting a broad electromagnetic region. In this work, we have investigated how random scattering modulates the optical properties, from terahertz to ultraviolet light, of a novel functional material, i.e., a three-dimensional graphene (3D Graphene) network based on interconnected high-quality two-dimensional graphene layers. Here, random scattering generates a high-frequency pass-filter behavior. The optical properties of these graphene structures bridge the nanoworld into the macroscopic world, paving the way for their use in novel optoelectronic devices. We investigate how random scattering modulates the optical properties, from terahertz to ultraviolet, of a three-dimensional graphene network based on interconnected high-quality 2-Dimensional graphene layers. We show how the connectivity and morphology of these materials allow a broadband interaction with light. The 3D graphene networks behave like a high-pass optical filter due to spatially multiscale random scatterers, corresponding to pores and graphene branches in the 3D network. We develop a model based on the Radiative Transfer theory describing the interaction of the network with light, from which we estimate the photon scattering mean free path.</description><subject>639/624/399</subject><subject>639/925</subject><subject>Biomaterials</subject><subject>Bridges</subject><subject>Broadband</subject><subject>Chemistry and Materials Science</subject><subject>Energy Systems</subject><subject>Functional materials</subject><subject>Graphene</subject><subject>Liquid crystals</subject><subject>Materials Science</subject><subject>Mimicry</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>Optical filters</subject><subject>Optical properties</subject><subject>Optoelectronic devices</subject><subject>Photon scatter</subject><subject>Radiative transfer</subject><subject>Scattering</subject><subject>Structural Materials</subject><subject>Surface and Interface Science</subject><subject>Terahertz frequencies</subject><subject>Thin Films</subject><subject>Ultraviolet radiation</subject><issn>1884-4049</issn><issn>1884-4057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouKz-AU8Bz9WkSZv0KOsnLHjRc0iT6bZrt1knWUV_vV0revM0A_O8L8NDyBlnF5wJfRkll7nKWM4zxoTkWXVAZlxrmUlWqMPfXVbH5DTGNWOMl6XUhZwRd93FgB4QPN22IYWhc5HW0Nq3LiBtMGxoArQtYPqkKdBdn3B_6yHR0FBLU4sAme82MMQuDLanK7TbFgagA6T3gC8n5KixfYTTnzknz7c3T4v7bPl497C4WmZO5lXKuIdGK868FLVWNS8r1bC6EqBcJZ3wjqmmBiZtCdY7nmvua1UXTggtSmELMSfnU-8Ww-sOYjLrsMPxo2jyotJajG6qkconymGIEaExW-w2Fj8MZ2bv00w-zejTfPs0-5CYQnGEhxXgX_U_qS8B13oo</recordid><startdate>20211119</startdate><enddate>20211119</enddate><creator>Tomarchio, Luca</creator><creator>Macis, Salvatore</creator><creator>D’Arco, Annalisa</creator><creator>Mou, Sen</creator><creator>Grilli, Antonio</creator><creator>Romani, Martina</creator><creator>Guidi, Mariangela Cestelli</creator><creator>Hu, Kailong</creator><creator>Kukunuri, Suresh</creator><creator>Jeong, Samuel</creator><creator>Marcelli, Augusto</creator><creator>Ito, Yoshikazu</creator><creator>Lupi, Stefano</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7002-337X</orcidid><orcidid>https://orcid.org/0000-0001-7990-5117</orcidid><orcidid>https://orcid.org/0000-0003-2231-7271</orcidid></search><sort><creationdate>20211119</creationdate><title>Disordered photonics behavior from terahertz to ultraviolet of a three-dimensional graphene network</title><author>Tomarchio, Luca ; Macis, Salvatore ; D’Arco, Annalisa ; Mou, Sen ; Grilli, Antonio ; Romani, Martina ; Guidi, Mariangela Cestelli ; Hu, Kailong ; Kukunuri, Suresh ; Jeong, Samuel ; Marcelli, Augusto ; Ito, Yoshikazu ; Lupi, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-1def8710d43b87b1697f0b93e7c94c3dc07fbe04a6eadc1281db7b5c338363a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/624/399</topic><topic>639/925</topic><topic>Biomaterials</topic><topic>Bridges</topic><topic>Broadband</topic><topic>Chemistry and Materials Science</topic><topic>Energy Systems</topic><topic>Functional materials</topic><topic>Graphene</topic><topic>Liquid crystals</topic><topic>Materials Science</topic><topic>Mimicry</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>Optical filters</topic><topic>Optical properties</topic><topic>Optoelectronic devices</topic><topic>Photon scatter</topic><topic>Radiative transfer</topic><topic>Scattering</topic><topic>Structural Materials</topic><topic>Surface and Interface Science</topic><topic>Terahertz frequencies</topic><topic>Thin Films</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomarchio, Luca</creatorcontrib><creatorcontrib>Macis, Salvatore</creatorcontrib><creatorcontrib>D’Arco, Annalisa</creatorcontrib><creatorcontrib>Mou, Sen</creatorcontrib><creatorcontrib>Grilli, Antonio</creatorcontrib><creatorcontrib>Romani, Martina</creatorcontrib><creatorcontrib>Guidi, Mariangela Cestelli</creatorcontrib><creatorcontrib>Hu, Kailong</creatorcontrib><creatorcontrib>Kukunuri, Suresh</creatorcontrib><creatorcontrib>Jeong, Samuel</creatorcontrib><creatorcontrib>Marcelli, Augusto</creatorcontrib><creatorcontrib>Ito, Yoshikazu</creatorcontrib><creatorcontrib>Lupi, Stefano</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>NPG Asia materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomarchio, Luca</au><au>Macis, Salvatore</au><au>D’Arco, Annalisa</au><au>Mou, Sen</au><au>Grilli, Antonio</au><au>Romani, Martina</au><au>Guidi, Mariangela Cestelli</au><au>Hu, Kailong</au><au>Kukunuri, Suresh</au><au>Jeong, Samuel</au><au>Marcelli, Augusto</au><au>Ito, Yoshikazu</au><au>Lupi, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disordered photonics behavior from terahertz to ultraviolet of a three-dimensional graphene network</atitle><jtitle>NPG Asia materials</jtitle><stitle>NPG Asia Mater</stitle><date>2021-11-19</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><artnum>73</artnum><issn>1884-4049</issn><eissn>1884-4057</eissn><abstract>The diffusion of light by random materials is a general phenomenon that appears in many different systems, spanning from colloidal suspension in liquid crystals to disordered metal sponges and paper composed of random fibers. Random scattering is also a key element behind mimicry of several animals, such as white beetles and chameleons. Here, random scattering is related to micro and nanosized spatial structures affecting a broad electromagnetic region. In this work, we have investigated how random scattering modulates the optical properties, from terahertz to ultraviolet light, of a novel functional material, i.e., a three-dimensional graphene (3D Graphene) network based on interconnected high-quality two-dimensional graphene layers. Here, random scattering generates a high-frequency pass-filter behavior. The optical properties of these graphene structures bridge the nanoworld into the macroscopic world, paving the way for their use in novel optoelectronic devices. We investigate how random scattering modulates the optical properties, from terahertz to ultraviolet, of a three-dimensional graphene network based on interconnected high-quality 2-Dimensional graphene layers. We show how the connectivity and morphology of these materials allow a broadband interaction with light. The 3D graphene networks behave like a high-pass optical filter due to spatially multiscale random scatterers, corresponding to pores and graphene branches in the 3D network. We develop a model based on the Radiative Transfer theory describing the interaction of the network with light, from which we estimate the photon scattering mean free path.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41427-021-00341-9</doi><orcidid>https://orcid.org/0000-0001-7002-337X</orcidid><orcidid>https://orcid.org/0000-0001-7990-5117</orcidid><orcidid>https://orcid.org/0000-0003-2231-7271</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1884-4049
ispartof NPG Asia materials, 2021-11, Vol.13 (1), Article 73
issn 1884-4049
1884-4057
language eng
recordid cdi_proquest_journals_2598833419
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects 639/624/399
639/925
Biomaterials
Bridges
Broadband
Chemistry and Materials Science
Energy Systems
Functional materials
Graphene
Liquid crystals
Materials Science
Mimicry
Morphology
Optical and Electronic Materials
Optical filters
Optical properties
Optoelectronic devices
Photon scatter
Radiative transfer
Scattering
Structural Materials
Surface and Interface Science
Terahertz frequencies
Thin Films
Ultraviolet radiation
title Disordered photonics behavior from terahertz to ultraviolet of a three-dimensional graphene network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disordered%20photonics%20behavior%20from%20terahertz%20to%20ultraviolet%20of%20a%20three-dimensional%20graphene%20network&rft.jtitle=NPG%20Asia%20materials&rft.au=Tomarchio,%20Luca&rft.date=2021-11-19&rft.volume=13&rft.issue=1&rft.artnum=73&rft.issn=1884-4049&rft.eissn=1884-4057&rft_id=info:doi/10.1038/s41427-021-00341-9&rft_dat=%3Cproquest_cross%3E2598833419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598833419&rft_id=info:pmid/&rfr_iscdi=true