Maximum Box Problem on Stochastic Points

Given a finite set of weighted points in R d (where there can be negative weights), the maximum box problem asks for an axis-aligned rectangle (i.e., box) such that the sum of the weights of the points that it contains is maximized. We consider that each point of the input has a probability of being...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2021-12, Vol.83 (12), p.3741-3765
Hauptverfasser: Caraballo, Luis E., Pérez-Lantero, Pablo, Seara, Carlos, Ventura, Inmaculada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3765
container_issue 12
container_start_page 3741
container_title Algorithmica
container_volume 83
creator Caraballo, Luis E.
Pérez-Lantero, Pablo
Seara, Carlos
Ventura, Inmaculada
description Given a finite set of weighted points in R d (where there can be negative weights), the maximum box problem asks for an axis-aligned rectangle (i.e., box) such that the sum of the weights of the points that it contains is maximized. We consider that each point of the input has a probability of being present in the final random point set, and these events are mutually independent; then, the total weight of a maximum box is a random variable. We aim to compute both the probability that this variable is at least a given parameter, and its expectation. We show that even in d = 1 these computations are #P-hard, and give pseudo-polynomial time algorithms in the case where the weights are integers in a bounded interval. For d = 2 , we consider that each point is colored red or blue, where red points have weight + 1 and blue points weight - ∞ . The random variable is the maximum number of red points that can be covered with a box not containing any blue point. We prove that the above two computations are also #P-hard, and give a polynomial-time algorithm for computing the probability that there is a box containing exactly two red points, no blue point, and a given point of the plane.
doi_str_mv 10.1007/s00453-021-00882-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2598658575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598658575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-5379f73969eaa9f41b46130b921397cc5e808b04873377dac626f7db6486e1973</originalsourceid><addsrcrecordid>eNp9kEtLAzEYRYMoOFb_gKsBN26iX97JUosvqFhQ1yGTZnRKZ1KTKdT-ekdHcOfqbs69Fw5CpwQuCIC6zABcMAyUYACtKd7toYJwRjEITvZRAURpzCVRh-go5yUAocrIAp0_um3TbtryOm7LeYrVKrRl7MrnPvp3l_vGl_PYdH0-Rge1W-Vw8psT9Hp78zK9x7Onu4fp1Qx7RniPBVOmVsxIE5wzNSfVcMqgMpQwo7wXQYOugGvFmFIL5yWVtVpUkmsZiFFsgs7G3XWKH5uQe7uMm9QNl5YKo6XQQomBoiPlU8w5hdquU9O69GkJ2G8jdjRiByP2x4jdDSU2lvIAd28h_U3_0_oCaBxheQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598658575</pqid></control><display><type>article</type><title>Maximum Box Problem on Stochastic Points</title><source>SpringerNature Journals</source><creator>Caraballo, Luis E. ; Pérez-Lantero, Pablo ; Seara, Carlos ; Ventura, Inmaculada</creator><creatorcontrib>Caraballo, Luis E. ; Pérez-Lantero, Pablo ; Seara, Carlos ; Ventura, Inmaculada</creatorcontrib><description>Given a finite set of weighted points in R d (where there can be negative weights), the maximum box problem asks for an axis-aligned rectangle (i.e., box) such that the sum of the weights of the points that it contains is maximized. We consider that each point of the input has a probability of being present in the final random point set, and these events are mutually independent; then, the total weight of a maximum box is a random variable. We aim to compute both the probability that this variable is at least a given parameter, and its expectation. We show that even in d = 1 these computations are #P-hard, and give pseudo-polynomial time algorithms in the case where the weights are integers in a bounded interval. For d = 2 , we consider that each point is colored red or blue, where red points have weight + 1 and blue points weight - ∞ . The random variable is the maximum number of red points that can be covered with a box not containing any blue point. We prove that the above two computations are also #P-hard, and give a polynomial-time algorithm for computing the probability that there is a box containing exactly two red points, no blue point, and a given point of the plane.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-021-00882-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Graphs ; Mathematics of Computing ; Polynomials ; Random variables ; Theory of Computation</subject><ispartof>Algorithmica, 2021-12, Vol.83 (12), p.3741-3765</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-5379f73969eaa9f41b46130b921397cc5e808b04873377dac626f7db6486e1973</cites><orcidid>0000-0002-0095-1725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-021-00882-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-021-00882-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Caraballo, Luis E.</creatorcontrib><creatorcontrib>Pérez-Lantero, Pablo</creatorcontrib><creatorcontrib>Seara, Carlos</creatorcontrib><creatorcontrib>Ventura, Inmaculada</creatorcontrib><title>Maximum Box Problem on Stochastic Points</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>Given a finite set of weighted points in R d (where there can be negative weights), the maximum box problem asks for an axis-aligned rectangle (i.e., box) such that the sum of the weights of the points that it contains is maximized. We consider that each point of the input has a probability of being present in the final random point set, and these events are mutually independent; then, the total weight of a maximum box is a random variable. We aim to compute both the probability that this variable is at least a given parameter, and its expectation. We show that even in d = 1 these computations are #P-hard, and give pseudo-polynomial time algorithms in the case where the weights are integers in a bounded interval. For d = 2 , we consider that each point is colored red or blue, where red points have weight + 1 and blue points weight - ∞ . The random variable is the maximum number of red points that can be covered with a box not containing any blue point. We prove that the above two computations are also #P-hard, and give a polynomial-time algorithm for computing the probability that there is a box containing exactly two red points, no blue point, and a given point of the plane.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Graphs</subject><subject>Mathematics of Computing</subject><subject>Polynomials</subject><subject>Random variables</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEYRYMoOFb_gKsBN26iX97JUosvqFhQ1yGTZnRKZ1KTKdT-ekdHcOfqbs69Fw5CpwQuCIC6zABcMAyUYACtKd7toYJwRjEITvZRAURpzCVRh-go5yUAocrIAp0_um3TbtryOm7LeYrVKrRl7MrnPvp3l_vGl_PYdH0-Rge1W-Vw8psT9Hp78zK9x7Onu4fp1Qx7RniPBVOmVsxIE5wzNSfVcMqgMpQwo7wXQYOugGvFmFIL5yWVtVpUkmsZiFFsgs7G3XWKH5uQe7uMm9QNl5YKo6XQQomBoiPlU8w5hdquU9O69GkJ2G8jdjRiByP2x4jdDSU2lvIAd28h_U3_0_oCaBxheQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Caraballo, Luis E.</creator><creator>Pérez-Lantero, Pablo</creator><creator>Seara, Carlos</creator><creator>Ventura, Inmaculada</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0095-1725</orcidid></search><sort><creationdate>20211201</creationdate><title>Maximum Box Problem on Stochastic Points</title><author>Caraballo, Luis E. ; Pérez-Lantero, Pablo ; Seara, Carlos ; Ventura, Inmaculada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-5379f73969eaa9f41b46130b921397cc5e808b04873377dac626f7db6486e1973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Graphs</topic><topic>Mathematics of Computing</topic><topic>Polynomials</topic><topic>Random variables</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caraballo, Luis E.</creatorcontrib><creatorcontrib>Pérez-Lantero, Pablo</creatorcontrib><creatorcontrib>Seara, Carlos</creatorcontrib><creatorcontrib>Ventura, Inmaculada</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caraballo, Luis E.</au><au>Pérez-Lantero, Pablo</au><au>Seara, Carlos</au><au>Ventura, Inmaculada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum Box Problem on Stochastic Points</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>83</volume><issue>12</issue><spage>3741</spage><epage>3765</epage><pages>3741-3765</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>Given a finite set of weighted points in R d (where there can be negative weights), the maximum box problem asks for an axis-aligned rectangle (i.e., box) such that the sum of the weights of the points that it contains is maximized. We consider that each point of the input has a probability of being present in the final random point set, and these events are mutually independent; then, the total weight of a maximum box is a random variable. We aim to compute both the probability that this variable is at least a given parameter, and its expectation. We show that even in d = 1 these computations are #P-hard, and give pseudo-polynomial time algorithms in the case where the weights are integers in a bounded interval. For d = 2 , we consider that each point is colored red or blue, where red points have weight + 1 and blue points weight - ∞ . The random variable is the maximum number of red points that can be covered with a box not containing any blue point. We prove that the above two computations are also #P-hard, and give a polynomial-time algorithm for computing the probability that there is a box containing exactly two red points, no blue point, and a given point of the plane.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-021-00882-z</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-0095-1725</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2021-12, Vol.83 (12), p.3741-3765
issn 0178-4617
1432-0541
language eng
recordid cdi_proquest_journals_2598658575
source SpringerNature Journals
subjects Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Graphs
Mathematics of Computing
Polynomials
Random variables
Theory of Computation
title Maximum Box Problem on Stochastic Points
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A18%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20Box%20Problem%20on%20Stochastic%20Points&rft.jtitle=Algorithmica&rft.au=Caraballo,%20Luis%20E.&rft.date=2021-12-01&rft.volume=83&rft.issue=12&rft.spage=3741&rft.epage=3765&rft.pages=3741-3765&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-021-00882-z&rft_dat=%3Cproquest_cross%3E2598658575%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598658575&rft_id=info:pmid/&rfr_iscdi=true