Tissue Programmed Hydrogels Functionalized with GDNF Improve Human Neural Grafts in Parkinson's Disease
The survival and synaptic integration of transplanted dopaminergic (DA) progenitors are essential for ameliorating motor symptoms in Parkinson's disease (PD). Human pluripotent stem cell (hPSC)‐derived DA progenitors are, however, exposed to numerous stressors prior to, and during, implantation...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-11, Vol.31 (47), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 47 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Hunt, Cameron P. J. Penna, Vanessa Gantner, Carlos W. Moriarty, Niamh Wang, Yi Franks, Stephanie Ermine, Charlotte M. Luzy, Isabelle R. Pavan, Chiara Long, Benjamin M. Williams, Richard J. Thompson, Lachlan H. Nisbet, David R. Parish, Clare L. |
description | The survival and synaptic integration of transplanted dopaminergic (DA) progenitors are essential for ameliorating motor symptoms in Parkinson's disease (PD). Human pluripotent stem cell (hPSC)‐derived DA progenitors are, however, exposed to numerous stressors prior to, and during, implantation that result in poor survival. Additionally, hPSC‐derived grafts show inferior plasticity compared to fetal tissue grafts. These observations suggest that a more conducive host environment may improve graft outcomes. Here, tissue‐specific support to DA progenitor grafts is provided with a fully characterized self‐assembling peptide hydrogel. This biomimetic hydrogel matrix is programmed to support DA progenitors by i) including a laminin epitope within the matrix; and ii) shear encapsulating glial cell line‐derived neurotrophic factor (GDNF) to ensure its sustained delivery. The biocompatible hydrogel biased a 51% increase in A9 neuron specification—a subpopulation of DA neurons critical for motor function. The sustained delivery of GDNF induced a 2.7‐fold increase in DA neurons and enhanced graft plasticity, resulting in significant improvements in motor deficits at 6 months. These findings highlight the therapeutic benefit of stepwise customization of tissue‐specific hydrogels to improve the physical and trophic support of human PSC‐derived neural transplants, resulting in improved standardization, predictability and functional efficacy of grafts for PD.
The benefits of a functionalized tissue‐specific hydrogel are demonstrated to support human stem cell‐derived neural transplants in a Parkinson's disease model. The laminin epitope‐presenting hydrogel selectively supports A9 dopamine neurons, critical for motor function, while sustained glial cell line‐derived neurotrophic factor delivery enhances graft survival and plasticity—collectively resulting in improved recovery of motor symptoms. |
doi_str_mv | 10.1002/adfm.202105301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2598381679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598381679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-71b4fc2317a127d3d8fea11038a0a82ae8f668851d2cb5bcf7b772ee6d37eac83</originalsourceid><addsrcrecordid>eNqFkM1PAjEQxRujiYhePTfx4AnstOy2HAm4QILKARNvTXd3Fov7ge2uBP96l2Dw6GlmMu83efMIuQXWB8b4g0mzos8ZBxYIBmekAyGEPcG4Oj_18HZJrrzfMAZSikGHrFfW-wbp0lVrZ4oCUzrbp-2AuadRUya1rUqT2-92sbP1O51OniM6L7au-kI6awpT0mdsnMnp1Jms9tSWdGnchy19Vd57OrEejcdrcpGZ3OPNb-2S1-hxNZ71Fi_T-Xi06CUikNCTEA-yhAuQBrhMRaoyNABMKMOM4gZVFoZKBZDyJA7iJJOxlBwxTIVEkyjRJXfHu63BzwZ9rTdV49oPvObBUAkFoRy2qv5RlbjKe4eZ3jpbGLfXwPQhTH0IU5_CbIHhEdjZHPf_qPVoEj39sT_ON3lD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598381679</pqid></control><display><type>article</type><title>Tissue Programmed Hydrogels Functionalized with GDNF Improve Human Neural Grafts in Parkinson's Disease</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hunt, Cameron P. J. ; Penna, Vanessa ; Gantner, Carlos W. ; Moriarty, Niamh ; Wang, Yi ; Franks, Stephanie ; Ermine, Charlotte M. ; Luzy, Isabelle R. ; Pavan, Chiara ; Long, Benjamin M. ; Williams, Richard J. ; Thompson, Lachlan H. ; Nisbet, David R. ; Parish, Clare L.</creator><creatorcontrib>Hunt, Cameron P. J. ; Penna, Vanessa ; Gantner, Carlos W. ; Moriarty, Niamh ; Wang, Yi ; Franks, Stephanie ; Ermine, Charlotte M. ; Luzy, Isabelle R. ; Pavan, Chiara ; Long, Benjamin M. ; Williams, Richard J. ; Thompson, Lachlan H. ; Nisbet, David R. ; Parish, Clare L.</creatorcontrib><description>The survival and synaptic integration of transplanted dopaminergic (DA) progenitors are essential for ameliorating motor symptoms in Parkinson's disease (PD). Human pluripotent stem cell (hPSC)‐derived DA progenitors are, however, exposed to numerous stressors prior to, and during, implantation that result in poor survival. Additionally, hPSC‐derived grafts show inferior plasticity compared to fetal tissue grafts. These observations suggest that a more conducive host environment may improve graft outcomes. Here, tissue‐specific support to DA progenitor grafts is provided with a fully characterized self‐assembling peptide hydrogel. This biomimetic hydrogel matrix is programmed to support DA progenitors by i) including a laminin epitope within the matrix; and ii) shear encapsulating glial cell line‐derived neurotrophic factor (GDNF) to ensure its sustained delivery. The biocompatible hydrogel biased a 51% increase in A9 neuron specification—a subpopulation of DA neurons critical for motor function. The sustained delivery of GDNF induced a 2.7‐fold increase in DA neurons and enhanced graft plasticity, resulting in significant improvements in motor deficits at 6 months. These findings highlight the therapeutic benefit of stepwise customization of tissue‐specific hydrogels to improve the physical and trophic support of human PSC‐derived neural transplants, resulting in improved standardization, predictability and functional efficacy of grafts for PD.
The benefits of a functionalized tissue‐specific hydrogel are demonstrated to support human stem cell‐derived neural transplants in a Parkinson's disease model. The laminin epitope‐presenting hydrogel selectively supports A9 dopamine neurons, critical for motor function, while sustained glial cell line‐derived neurotrophic factor delivery enhances graft survival and plasticity—collectively resulting in improved recovery of motor symptoms.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202105301</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; biomaterials ; Biomimetics ; dopamine ; glial cell line‐derived neurotrophic factor ; Grafting ; Hydrogels ; Laminin ; Materials science ; Neurons ; Parkinson's disease ; Plastic properties ; self‐assembling peptides ; Signs and symptoms ; Standardization ; Stem cells ; Survival ; transplantation ; Transplants</subject><ispartof>Advanced functional materials, 2021-11, Vol.31 (47), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-71b4fc2317a127d3d8fea11038a0a82ae8f668851d2cb5bcf7b772ee6d37eac83</citedby><cites>FETCH-LOGICAL-c3571-71b4fc2317a127d3d8fea11038a0a82ae8f668851d2cb5bcf7b772ee6d37eac83</cites><orcidid>0000-0002-1343-0769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202105301$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202105301$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hunt, Cameron P. J.</creatorcontrib><creatorcontrib>Penna, Vanessa</creatorcontrib><creatorcontrib>Gantner, Carlos W.</creatorcontrib><creatorcontrib>Moriarty, Niamh</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Franks, Stephanie</creatorcontrib><creatorcontrib>Ermine, Charlotte M.</creatorcontrib><creatorcontrib>Luzy, Isabelle R.</creatorcontrib><creatorcontrib>Pavan, Chiara</creatorcontrib><creatorcontrib>Long, Benjamin M.</creatorcontrib><creatorcontrib>Williams, Richard J.</creatorcontrib><creatorcontrib>Thompson, Lachlan H.</creatorcontrib><creatorcontrib>Nisbet, David R.</creatorcontrib><creatorcontrib>Parish, Clare L.</creatorcontrib><title>Tissue Programmed Hydrogels Functionalized with GDNF Improve Human Neural Grafts in Parkinson's Disease</title><title>Advanced functional materials</title><description>The survival and synaptic integration of transplanted dopaminergic (DA) progenitors are essential for ameliorating motor symptoms in Parkinson's disease (PD). Human pluripotent stem cell (hPSC)‐derived DA progenitors are, however, exposed to numerous stressors prior to, and during, implantation that result in poor survival. Additionally, hPSC‐derived grafts show inferior plasticity compared to fetal tissue grafts. These observations suggest that a more conducive host environment may improve graft outcomes. Here, tissue‐specific support to DA progenitor grafts is provided with a fully characterized self‐assembling peptide hydrogel. This biomimetic hydrogel matrix is programmed to support DA progenitors by i) including a laminin epitope within the matrix; and ii) shear encapsulating glial cell line‐derived neurotrophic factor (GDNF) to ensure its sustained delivery. The biocompatible hydrogel biased a 51% increase in A9 neuron specification—a subpopulation of DA neurons critical for motor function. The sustained delivery of GDNF induced a 2.7‐fold increase in DA neurons and enhanced graft plasticity, resulting in significant improvements in motor deficits at 6 months. These findings highlight the therapeutic benefit of stepwise customization of tissue‐specific hydrogels to improve the physical and trophic support of human PSC‐derived neural transplants, resulting in improved standardization, predictability and functional efficacy of grafts for PD.
The benefits of a functionalized tissue‐specific hydrogel are demonstrated to support human stem cell‐derived neural transplants in a Parkinson's disease model. The laminin epitope‐presenting hydrogel selectively supports A9 dopamine neurons, critical for motor function, while sustained glial cell line‐derived neurotrophic factor delivery enhances graft survival and plasticity—collectively resulting in improved recovery of motor symptoms.</description><subject>Biocompatibility</subject><subject>biomaterials</subject><subject>Biomimetics</subject><subject>dopamine</subject><subject>glial cell line‐derived neurotrophic factor</subject><subject>Grafting</subject><subject>Hydrogels</subject><subject>Laminin</subject><subject>Materials science</subject><subject>Neurons</subject><subject>Parkinson's disease</subject><subject>Plastic properties</subject><subject>self‐assembling peptides</subject><subject>Signs and symptoms</subject><subject>Standardization</subject><subject>Stem cells</subject><subject>Survival</subject><subject>transplantation</subject><subject>Transplants</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PAjEQxRujiYhePTfx4AnstOy2HAm4QILKARNvTXd3Fov7ge2uBP96l2Dw6GlmMu83efMIuQXWB8b4g0mzos8ZBxYIBmekAyGEPcG4Oj_18HZJrrzfMAZSikGHrFfW-wbp0lVrZ4oCUzrbp-2AuadRUya1rUqT2-92sbP1O51OniM6L7au-kI6awpT0mdsnMnp1Jms9tSWdGnchy19Vd57OrEejcdrcpGZ3OPNb-2S1-hxNZ71Fi_T-Xi06CUikNCTEA-yhAuQBrhMRaoyNABMKMOM4gZVFoZKBZDyJA7iJJOxlBwxTIVEkyjRJXfHu63BzwZ9rTdV49oPvObBUAkFoRy2qv5RlbjKe4eZ3jpbGLfXwPQhTH0IU5_CbIHhEdjZHPf_qPVoEj39sT_ON3lD</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Hunt, Cameron P. J.</creator><creator>Penna, Vanessa</creator><creator>Gantner, Carlos W.</creator><creator>Moriarty, Niamh</creator><creator>Wang, Yi</creator><creator>Franks, Stephanie</creator><creator>Ermine, Charlotte M.</creator><creator>Luzy, Isabelle R.</creator><creator>Pavan, Chiara</creator><creator>Long, Benjamin M.</creator><creator>Williams, Richard J.</creator><creator>Thompson, Lachlan H.</creator><creator>Nisbet, David R.</creator><creator>Parish, Clare L.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1343-0769</orcidid></search><sort><creationdate>20211101</creationdate><title>Tissue Programmed Hydrogels Functionalized with GDNF Improve Human Neural Grafts in Parkinson's Disease</title><author>Hunt, Cameron P. J. ; Penna, Vanessa ; Gantner, Carlos W. ; Moriarty, Niamh ; Wang, Yi ; Franks, Stephanie ; Ermine, Charlotte M. ; Luzy, Isabelle R. ; Pavan, Chiara ; Long, Benjamin M. ; Williams, Richard J. ; Thompson, Lachlan H. ; Nisbet, David R. ; Parish, Clare L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-71b4fc2317a127d3d8fea11038a0a82ae8f668851d2cb5bcf7b772ee6d37eac83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biocompatibility</topic><topic>biomaterials</topic><topic>Biomimetics</topic><topic>dopamine</topic><topic>glial cell line‐derived neurotrophic factor</topic><topic>Grafting</topic><topic>Hydrogels</topic><topic>Laminin</topic><topic>Materials science</topic><topic>Neurons</topic><topic>Parkinson's disease</topic><topic>Plastic properties</topic><topic>self‐assembling peptides</topic><topic>Signs and symptoms</topic><topic>Standardization</topic><topic>Stem cells</topic><topic>Survival</topic><topic>transplantation</topic><topic>Transplants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunt, Cameron P. J.</creatorcontrib><creatorcontrib>Penna, Vanessa</creatorcontrib><creatorcontrib>Gantner, Carlos W.</creatorcontrib><creatorcontrib>Moriarty, Niamh</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Franks, Stephanie</creatorcontrib><creatorcontrib>Ermine, Charlotte M.</creatorcontrib><creatorcontrib>Luzy, Isabelle R.</creatorcontrib><creatorcontrib>Pavan, Chiara</creatorcontrib><creatorcontrib>Long, Benjamin M.</creatorcontrib><creatorcontrib>Williams, Richard J.</creatorcontrib><creatorcontrib>Thompson, Lachlan H.</creatorcontrib><creatorcontrib>Nisbet, David R.</creatorcontrib><creatorcontrib>Parish, Clare L.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunt, Cameron P. J.</au><au>Penna, Vanessa</au><au>Gantner, Carlos W.</au><au>Moriarty, Niamh</au><au>Wang, Yi</au><au>Franks, Stephanie</au><au>Ermine, Charlotte M.</au><au>Luzy, Isabelle R.</au><au>Pavan, Chiara</au><au>Long, Benjamin M.</au><au>Williams, Richard J.</au><au>Thompson, Lachlan H.</au><au>Nisbet, David R.</au><au>Parish, Clare L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tissue Programmed Hydrogels Functionalized with GDNF Improve Human Neural Grafts in Parkinson's Disease</atitle><jtitle>Advanced functional materials</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>31</volume><issue>47</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The survival and synaptic integration of transplanted dopaminergic (DA) progenitors are essential for ameliorating motor symptoms in Parkinson's disease (PD). Human pluripotent stem cell (hPSC)‐derived DA progenitors are, however, exposed to numerous stressors prior to, and during, implantation that result in poor survival. Additionally, hPSC‐derived grafts show inferior plasticity compared to fetal tissue grafts. These observations suggest that a more conducive host environment may improve graft outcomes. Here, tissue‐specific support to DA progenitor grafts is provided with a fully characterized self‐assembling peptide hydrogel. This biomimetic hydrogel matrix is programmed to support DA progenitors by i) including a laminin epitope within the matrix; and ii) shear encapsulating glial cell line‐derived neurotrophic factor (GDNF) to ensure its sustained delivery. The biocompatible hydrogel biased a 51% increase in A9 neuron specification—a subpopulation of DA neurons critical for motor function. The sustained delivery of GDNF induced a 2.7‐fold increase in DA neurons and enhanced graft plasticity, resulting in significant improvements in motor deficits at 6 months. These findings highlight the therapeutic benefit of stepwise customization of tissue‐specific hydrogels to improve the physical and trophic support of human PSC‐derived neural transplants, resulting in improved standardization, predictability and functional efficacy of grafts for PD.
The benefits of a functionalized tissue‐specific hydrogel are demonstrated to support human stem cell‐derived neural transplants in a Parkinson's disease model. The laminin epitope‐presenting hydrogel selectively supports A9 dopamine neurons, critical for motor function, while sustained glial cell line‐derived neurotrophic factor delivery enhances graft survival and plasticity—collectively resulting in improved recovery of motor symptoms.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202105301</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1343-0769</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-11, Vol.31 (47), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2598381679 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Biocompatibility biomaterials Biomimetics dopamine glial cell line‐derived neurotrophic factor Grafting Hydrogels Laminin Materials science Neurons Parkinson's disease Plastic properties self‐assembling peptides Signs and symptoms Standardization Stem cells Survival transplantation Transplants |
title | Tissue Programmed Hydrogels Functionalized with GDNF Improve Human Neural Grafts in Parkinson's Disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tissue%20Programmed%20Hydrogels%20Functionalized%20with%20GDNF%20Improve%20Human%20Neural%20Grafts%20in%20Parkinson's%20Disease&rft.jtitle=Advanced%20functional%20materials&rft.au=Hunt,%20Cameron%20P.%20J.&rft.date=2021-11-01&rft.volume=31&rft.issue=47&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202105301&rft_dat=%3Cproquest_cross%3E2598381679%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598381679&rft_id=info:pmid/&rfr_iscdi=true |