Which CNNs and Training Settings to Choose for Action Unit Detection? A Study Based on a Large-Scale Dataset
In this paper we explore the influence of some frequently used Convolutional Neural Networks (CNNs), training settings, and training set structures, on Action Unit (AU) detection. Specifically, we first compare 10 different shallow and deep CNNs in AU detection. Second, we investigate how the differ...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bishay, Mina Ghoneim, Ahmed Mohamed, Ashraf Mavadati, Mohammad |
description | In this paper we explore the influence of some frequently used Convolutional Neural Networks (CNNs), training settings, and training set structures, on Action Unit (AU) detection. Specifically, we first compare 10 different shallow and deep CNNs in AU detection. Second, we investigate how the different training settings (i.e. centering/normalizing the inputs, using different augmentation severities, and balancing the data) impact the performance in AU detection. Third, we explore the effect of increasing the number of labelled subjects and frames in the training set on the AU detection performance. These comparisons provide the research community with useful tips about the choice of different CNNs and training settings in AU detection. In our analysis, we use a large-scale naturalistic dataset, consisting of ~55K videos captured in the wild. To the best of our knowledge, there is no work that had investigated the impact of such settings on a large-scale AU dataset. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2598302952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598302952</sourcerecordid><originalsourceid>FETCH-proquest_journals_25983029523</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgKOo_PHAu1MRonaRWxUFcWnGU0L7alJJo8jr49wbxA5yO427AxlyIRZQsOR-xmfdtHMd8teZSijHrbo0uG8guFw_KVFA4pY02D8iRKNADWcgaaz1CbR2kJWlr4Go0wR4Jv7qFFHLqqzfslMcKwqDgrNwDo7xUHcJeUQg0ZcNadR5nP07Y_HgoslP0dPbVo6d7a3tnQrpzuUlEzDeSi_-uD0zBRxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598302952</pqid></control><display><type>article</type><title>Which CNNs and Training Settings to Choose for Action Unit Detection? A Study Based on a Large-Scale Dataset</title><source>Freely Accessible Journals</source><creator>Bishay, Mina ; Ghoneim, Ahmed ; Mohamed, Ashraf ; Mavadati, Mohammad</creator><creatorcontrib>Bishay, Mina ; Ghoneim, Ahmed ; Mohamed, Ashraf ; Mavadati, Mohammad</creatorcontrib><description>In this paper we explore the influence of some frequently used Convolutional Neural Networks (CNNs), training settings, and training set structures, on Action Unit (AU) detection. Specifically, we first compare 10 different shallow and deep CNNs in AU detection. Second, we investigate how the different training settings (i.e. centering/normalizing the inputs, using different augmentation severities, and balancing the data) impact the performance in AU detection. Third, we explore the effect of increasing the number of labelled subjects and frames in the training set on the AU detection performance. These comparisons provide the research community with useful tips about the choice of different CNNs and training settings in AU detection. In our analysis, we use a large-scale naturalistic dataset, consisting of ~55K videos captured in the wild. To the best of our knowledge, there is no work that had investigated the impact of such settings on a large-scale AU dataset.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Datasets ; Lifelong learning ; Normalizing ; Training</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Bishay, Mina</creatorcontrib><creatorcontrib>Ghoneim, Ahmed</creatorcontrib><creatorcontrib>Mohamed, Ashraf</creatorcontrib><creatorcontrib>Mavadati, Mohammad</creatorcontrib><title>Which CNNs and Training Settings to Choose for Action Unit Detection? A Study Based on a Large-Scale Dataset</title><title>arXiv.org</title><description>In this paper we explore the influence of some frequently used Convolutional Neural Networks (CNNs), training settings, and training set structures, on Action Unit (AU) detection. Specifically, we first compare 10 different shallow and deep CNNs in AU detection. Second, we investigate how the different training settings (i.e. centering/normalizing the inputs, using different augmentation severities, and balancing the data) impact the performance in AU detection. Third, we explore the effect of increasing the number of labelled subjects and frames in the training set on the AU detection performance. These comparisons provide the research community with useful tips about the choice of different CNNs and training settings in AU detection. In our analysis, we use a large-scale naturalistic dataset, consisting of ~55K videos captured in the wild. To the best of our knowledge, there is no work that had investigated the impact of such settings on a large-scale AU dataset.</description><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>Lifelong learning</subject><subject>Normalizing</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNirEKwjAUAIMgKOo_PHAu1MRonaRWxUFcWnGU0L7alJJo8jr49wbxA5yO427AxlyIRZQsOR-xmfdtHMd8teZSijHrbo0uG8guFw_KVFA4pY02D8iRKNADWcgaaz1CbR2kJWlr4Go0wR4Jv7qFFHLqqzfslMcKwqDgrNwDo7xUHcJeUQg0ZcNadR5nP07Y_HgoslP0dPbVo6d7a3tnQrpzuUlEzDeSi_-uD0zBRxQ</recordid><startdate>20211116</startdate><enddate>20211116</enddate><creator>Bishay, Mina</creator><creator>Ghoneim, Ahmed</creator><creator>Mohamed, Ashraf</creator><creator>Mavadati, Mohammad</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211116</creationdate><title>Which CNNs and Training Settings to Choose for Action Unit Detection? A Study Based on a Large-Scale Dataset</title><author>Bishay, Mina ; Ghoneim, Ahmed ; Mohamed, Ashraf ; Mavadati, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25983029523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>Lifelong learning</topic><topic>Normalizing</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Bishay, Mina</creatorcontrib><creatorcontrib>Ghoneim, Ahmed</creatorcontrib><creatorcontrib>Mohamed, Ashraf</creatorcontrib><creatorcontrib>Mavadati, Mohammad</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bishay, Mina</au><au>Ghoneim, Ahmed</au><au>Mohamed, Ashraf</au><au>Mavadati, Mohammad</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Which CNNs and Training Settings to Choose for Action Unit Detection? A Study Based on a Large-Scale Dataset</atitle><jtitle>arXiv.org</jtitle><date>2021-11-16</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper we explore the influence of some frequently used Convolutional Neural Networks (CNNs), training settings, and training set structures, on Action Unit (AU) detection. Specifically, we first compare 10 different shallow and deep CNNs in AU detection. Second, we investigate how the different training settings (i.e. centering/normalizing the inputs, using different augmentation severities, and balancing the data) impact the performance in AU detection. Third, we explore the effect of increasing the number of labelled subjects and frames in the training set on the AU detection performance. These comparisons provide the research community with useful tips about the choice of different CNNs and training settings in AU detection. In our analysis, we use a large-scale naturalistic dataset, consisting of ~55K videos captured in the wild. To the best of our knowledge, there is no work that had investigated the impact of such settings on a large-scale AU dataset.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2598302952 |
source | Freely Accessible Journals |
subjects | Artificial neural networks Datasets Lifelong learning Normalizing Training |
title | Which CNNs and Training Settings to Choose for Action Unit Detection? A Study Based on a Large-Scale Dataset |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Which%20CNNs%20and%20Training%20Settings%20to%20Choose%20for%20Action%20Unit%20Detection?%20A%20Study%20Based%20on%20a%20Large-Scale%20Dataset&rft.jtitle=arXiv.org&rft.au=Bishay,%20Mina&rft.date=2021-11-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2598302952%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598302952&rft_id=info:pmid/&rfr_iscdi=true |