A multi-omics investigation of the molecular characteristics and classification of six metabolic syndrome relevant diseases

Metabolic syndrome (MTS) is a cluster of concurrent metabolic abnormal conditions. MTS and its component metabolic diseases are heterogeneous and closely related, making their relationships complicated, thus hindering precision treatment. Methods: We collected seven groups of samples (group a: healt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theranostics 2020-01, Vol.10 (5), p.2029-2046
Hauptverfasser: Chen, Di, Zhao, Xinjie, Sui, Zhigang, Niu, Huan, Chen, Luonan, Hu, Cheng, Xuan, Qiuhui, Hou, Xuhong, Zhang, Rong, Zhou, Lina, Li, Yanli, Yuan, Huiming, Zhang, Yukui, Wu, Jiarui, Zhang, Lihua, Wu, Ren'an, Piao, Hai-Long, Xu, Guowang, Jia, Weiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2046
container_issue 5
container_start_page 2029
container_title Theranostics
container_volume 10
creator Chen, Di
Zhao, Xinjie
Sui, Zhigang
Niu, Huan
Chen, Luonan
Hu, Cheng
Xuan, Qiuhui
Hou, Xuhong
Zhang, Rong
Zhou, Lina
Li, Yanli
Yuan, Huiming
Zhang, Yukui
Wu, Jiarui
Zhang, Lihua
Wu, Ren'an
Piao, Hai-Long
Xu, Guowang
Jia, Weiping
description Metabolic syndrome (MTS) is a cluster of concurrent metabolic abnormal conditions. MTS and its component metabolic diseases are heterogeneous and closely related, making their relationships complicated, thus hindering precision treatment. Methods: We collected seven groups of samples (group a: healthy individuals; group b: obesity; group c: MTS; group d: hyperglycemia, group e: hypertension, group f: hyperlipidemia; group g: type II diabetes, n=7 for each group). We examined the molecular characteristics of each sample by metabolomic, proteomic and peptidomic profiling analysis. The differential molecules (including metabolites, proteins and peptides) between each disease group and the healthy group were recognized by statistical analyses. Furthermore, a two-step clustering workflow which combines multi-omics and clinical information was used to redefine molecularly and clinically differential groups. Meanwhile, molecular, clinical, network and pathway based analyses were used to identify the group-specific biological features. Results: Both shared and disease-specific molecular profiles among the six types of diseases were identified. Meanwhile, the patients were stratified into three distinct groups which were different from original disease definitions but presented significant differences in glucose and lipid metabolism (Group 1: relatively favorable metabolic conditions; Group 2: severe dyslipidemia; Group 3: dysregulated insulin and glucose). Group specific biological signatures were also systematically described. The dyslipidemia group showed higher levels in multiple lipid metabolites like phosphatidylserine and phosphatidylcholine, and showed significant up-regulations in lipid and amino acid metabolism pathways. The glucose dysregulated group showed higher levels in many polypeptides from proteins contributing to immune response. The another group, with better glucose/lipid metabolism ability, showed higher levels in lipid regulating enzymes like the lecithin cholesterol acyltransferase and proteins involved in complement and coagulation cascades. Conclusions: This multi-omics based study provides a general view of the complex relationships and an alternative classification for various metabolic diseases where the cross-talk or compensatory mechanism between the immune and metabolism systems plays a critical role.
doi_str_mv 10.7150/thno.41106
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2598255207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2363057692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-1bf249cd4d57a553d2771ef511e114b9a79ebe653824824e97018ba89b58c19f3</originalsourceid><addsrcrecordid>eNqNkk9rHCEYh4fS0IQkl36AIvRSGib1zzjqpRCWpC0EemnP4jjvZA2OpupsG_rlY3bTJe2pIij4vD9efWya1wSfC8Lxh7IO8bwjBPcvmiMimWxF3-GXz_aHzWnOt7iODlNF1KvmkFEslWDdUfP7As2LL66Ns7MZubCBXNyNKS4GFCdU1oDm6MEu3iRk1yYZWyC5ClXchBFZb3J2k7P7mux-oRmKGaJ3FuX7MKY4A0rgYWNCQaPLYDLkk-ZgMj7D6dN63Hy_uvy2-txef_30ZXVx3doO96Ulw0Q7Zcdu5MJwzkYqBIGJEwKEdIMyQsEAPWeSdnWCEpjIwUg1cGmJmthx83GXe7cMM4wWQknG67vkZpPudTRO_30S3FrfxI2uQYoIUgPePQWk-GOpD6Rnly14bwLEJWvKeoa56BWt6Nt_0Nu4pFCvpylXknJOsajU-x1lU8w5wbRvhmD9qFU_atVbrRV-87z9PfpHYgXkDvgJQ5yydRAs7LHqnWOJsWTbL7ByZStqFZdQaunZ_5eyBz4bwU4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598255207</pqid></control><display><type>article</type><title>A multi-omics investigation of the molecular characteristics and classification of six metabolic syndrome relevant diseases</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Chen, Di ; Zhao, Xinjie ; Sui, Zhigang ; Niu, Huan ; Chen, Luonan ; Hu, Cheng ; Xuan, Qiuhui ; Hou, Xuhong ; Zhang, Rong ; Zhou, Lina ; Li, Yanli ; Yuan, Huiming ; Zhang, Yukui ; Wu, Jiarui ; Zhang, Lihua ; Wu, Ren'an ; Piao, Hai-Long ; Xu, Guowang ; Jia, Weiping</creator><creatorcontrib>Chen, Di ; Zhao, Xinjie ; Sui, Zhigang ; Niu, Huan ; Chen, Luonan ; Hu, Cheng ; Xuan, Qiuhui ; Hou, Xuhong ; Zhang, Rong ; Zhou, Lina ; Li, Yanli ; Yuan, Huiming ; Zhang, Yukui ; Wu, Jiarui ; Zhang, Lihua ; Wu, Ren'an ; Piao, Hai-Long ; Xu, Guowang ; Jia, Weiping</creatorcontrib><description>Metabolic syndrome (MTS) is a cluster of concurrent metabolic abnormal conditions. MTS and its component metabolic diseases are heterogeneous and closely related, making their relationships complicated, thus hindering precision treatment. Methods: We collected seven groups of samples (group a: healthy individuals; group b: obesity; group c: MTS; group d: hyperglycemia, group e: hypertension, group f: hyperlipidemia; group g: type II diabetes, n=7 for each group). We examined the molecular characteristics of each sample by metabolomic, proteomic and peptidomic profiling analysis. The differential molecules (including metabolites, proteins and peptides) between each disease group and the healthy group were recognized by statistical analyses. Furthermore, a two-step clustering workflow which combines multi-omics and clinical information was used to redefine molecularly and clinically differential groups. Meanwhile, molecular, clinical, network and pathway based analyses were used to identify the group-specific biological features. Results: Both shared and disease-specific molecular profiles among the six types of diseases were identified. Meanwhile, the patients were stratified into three distinct groups which were different from original disease definitions but presented significant differences in glucose and lipid metabolism (Group 1: relatively favorable metabolic conditions; Group 2: severe dyslipidemia; Group 3: dysregulated insulin and glucose). Group specific biological signatures were also systematically described. The dyslipidemia group showed higher levels in multiple lipid metabolites like phosphatidylserine and phosphatidylcholine, and showed significant up-regulations in lipid and amino acid metabolism pathways. The glucose dysregulated group showed higher levels in many polypeptides from proteins contributing to immune response. The another group, with better glucose/lipid metabolism ability, showed higher levels in lipid regulating enzymes like the lecithin cholesterol acyltransferase and proteins involved in complement and coagulation cascades. Conclusions: This multi-omics based study provides a general view of the complex relationships and an alternative classification for various metabolic diseases where the cross-talk or compensatory mechanism between the immune and metabolism systems plays a critical role.</description><identifier>ISSN: 1838-7640</identifier><identifier>EISSN: 1838-7640</identifier><identifier>DOI: 10.7150/thno.41106</identifier><identifier>PMID: 32089734</identifier><language>eng</language><publisher>LAKE HAVEN: Ivyspring Int Publ</publisher><subject>Blood pressure ; Body mass index ; Classification ; Diabetes ; Diabetes Mellitus, Type 2 - blood ; Diabetes Mellitus, Type 2 - metabolism ; Disease ; Female ; Glucose ; Glucose - metabolism ; High density lipoprotein ; Humans ; Hyperglycemia ; Hyperglycemia - blood ; Hyperglycemia - metabolism ; Hyperlipidemias - blood ; Hyperlipidemias - metabolism ; Hypertension ; Hypertension - metabolism ; Insulin - metabolism ; Insulin resistance ; Investigations ; Life Sciences &amp; Biomedicine ; Lipid Metabolism ; Lipids ; Low density lipoprotein ; Male ; Medical diagnosis ; Medicine, Research &amp; Experimental ; Metabolic Diseases - classification ; Metabolic Diseases - immunology ; Metabolic Diseases - metabolism ; Metabolic disorders ; Metabolic syndrome ; Metabolic Syndrome - classification ; Metabolic Syndrome - immunology ; Metabolic Syndrome - metabolism ; Metabolites ; Metabolomics - methods ; Middle Aged ; Obesity ; Obesity - blood ; Obesity - metabolism ; Overweight ; Peptides ; Peptidomimetics ; Phosphatidylcholines - metabolism ; Phosphatidylserines - metabolism ; Plasma ; Proteomics ; Proteomics - methods ; Research &amp; Experimental Medicine ; Research Paper ; Science &amp; Technology ; Up-Regulation</subject><ispartof>Theranostics, 2020-01, Vol.10 (5), p.2029-2046</ispartof><rights>The author(s).</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000508008300004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c406t-1bf249cd4d57a553d2771ef511e114b9a79ebe653824824e97018ba89b58c19f3</citedby><cites>FETCH-LOGICAL-c406t-1bf249cd4d57a553d2771ef511e114b9a79ebe653824824e97018ba89b58c19f3</cites><orcidid>0000-0002-6244-2168 ; 0000-0003-4314-2386 ; 0000-0002-2181-4703 ; 0000-0003-4298-3554 ; 0000-0003-2543-1547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019171/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019171/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32089734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Di</creatorcontrib><creatorcontrib>Zhao, Xinjie</creatorcontrib><creatorcontrib>Sui, Zhigang</creatorcontrib><creatorcontrib>Niu, Huan</creatorcontrib><creatorcontrib>Chen, Luonan</creatorcontrib><creatorcontrib>Hu, Cheng</creatorcontrib><creatorcontrib>Xuan, Qiuhui</creatorcontrib><creatorcontrib>Hou, Xuhong</creatorcontrib><creatorcontrib>Zhang, Rong</creatorcontrib><creatorcontrib>Zhou, Lina</creatorcontrib><creatorcontrib>Li, Yanli</creatorcontrib><creatorcontrib>Yuan, Huiming</creatorcontrib><creatorcontrib>Zhang, Yukui</creatorcontrib><creatorcontrib>Wu, Jiarui</creatorcontrib><creatorcontrib>Zhang, Lihua</creatorcontrib><creatorcontrib>Wu, Ren'an</creatorcontrib><creatorcontrib>Piao, Hai-Long</creatorcontrib><creatorcontrib>Xu, Guowang</creatorcontrib><creatorcontrib>Jia, Weiping</creatorcontrib><title>A multi-omics investigation of the molecular characteristics and classification of six metabolic syndrome relevant diseases</title><title>Theranostics</title><addtitle>THERANOSTICS</addtitle><addtitle>Theranostics</addtitle><description>Metabolic syndrome (MTS) is a cluster of concurrent metabolic abnormal conditions. MTS and its component metabolic diseases are heterogeneous and closely related, making their relationships complicated, thus hindering precision treatment. Methods: We collected seven groups of samples (group a: healthy individuals; group b: obesity; group c: MTS; group d: hyperglycemia, group e: hypertension, group f: hyperlipidemia; group g: type II diabetes, n=7 for each group). We examined the molecular characteristics of each sample by metabolomic, proteomic and peptidomic profiling analysis. The differential molecules (including metabolites, proteins and peptides) between each disease group and the healthy group were recognized by statistical analyses. Furthermore, a two-step clustering workflow which combines multi-omics and clinical information was used to redefine molecularly and clinically differential groups. Meanwhile, molecular, clinical, network and pathway based analyses were used to identify the group-specific biological features. Results: Both shared and disease-specific molecular profiles among the six types of diseases were identified. Meanwhile, the patients were stratified into three distinct groups which were different from original disease definitions but presented significant differences in glucose and lipid metabolism (Group 1: relatively favorable metabolic conditions; Group 2: severe dyslipidemia; Group 3: dysregulated insulin and glucose). Group specific biological signatures were also systematically described. The dyslipidemia group showed higher levels in multiple lipid metabolites like phosphatidylserine and phosphatidylcholine, and showed significant up-regulations in lipid and amino acid metabolism pathways. The glucose dysregulated group showed higher levels in many polypeptides from proteins contributing to immune response. The another group, with better glucose/lipid metabolism ability, showed higher levels in lipid regulating enzymes like the lecithin cholesterol acyltransferase and proteins involved in complement and coagulation cascades. Conclusions: This multi-omics based study provides a general view of the complex relationships and an alternative classification for various metabolic diseases where the cross-talk or compensatory mechanism between the immune and metabolism systems plays a critical role.</description><subject>Blood pressure</subject><subject>Body mass index</subject><subject>Classification</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2 - blood</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Disease</subject><subject>Female</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>High density lipoprotein</subject><subject>Humans</subject><subject>Hyperglycemia</subject><subject>Hyperglycemia - blood</subject><subject>Hyperglycemia - metabolism</subject><subject>Hyperlipidemias - blood</subject><subject>Hyperlipidemias - metabolism</subject><subject>Hypertension</subject><subject>Hypertension - metabolism</subject><subject>Insulin - metabolism</subject><subject>Insulin resistance</subject><subject>Investigations</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>Low density lipoprotein</subject><subject>Male</subject><subject>Medical diagnosis</subject><subject>Medicine, Research &amp; Experimental</subject><subject>Metabolic Diseases - classification</subject><subject>Metabolic Diseases - immunology</subject><subject>Metabolic Diseases - metabolism</subject><subject>Metabolic disorders</subject><subject>Metabolic syndrome</subject><subject>Metabolic Syndrome - classification</subject><subject>Metabolic Syndrome - immunology</subject><subject>Metabolic Syndrome - metabolism</subject><subject>Metabolites</subject><subject>Metabolomics - methods</subject><subject>Middle Aged</subject><subject>Obesity</subject><subject>Obesity - blood</subject><subject>Obesity - metabolism</subject><subject>Overweight</subject><subject>Peptides</subject><subject>Peptidomimetics</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Phosphatidylserines - metabolism</subject><subject>Plasma</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Research &amp; Experimental Medicine</subject><subject>Research Paper</subject><subject>Science &amp; Technology</subject><subject>Up-Regulation</subject><issn>1838-7640</issn><issn>1838-7640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkk9rHCEYh4fS0IQkl36AIvRSGib1zzjqpRCWpC0EemnP4jjvZA2OpupsG_rlY3bTJe2pIij4vD9efWya1wSfC8Lxh7IO8bwjBPcvmiMimWxF3-GXz_aHzWnOt7iODlNF1KvmkFEslWDdUfP7As2LL66Ns7MZubCBXNyNKS4GFCdU1oDm6MEu3iRk1yYZWyC5ClXchBFZb3J2k7P7mux-oRmKGaJ3FuX7MKY4A0rgYWNCQaPLYDLkk-ZgMj7D6dN63Hy_uvy2-txef_30ZXVx3doO96Ulw0Q7Zcdu5MJwzkYqBIGJEwKEdIMyQsEAPWeSdnWCEpjIwUg1cGmJmthx83GXe7cMM4wWQknG67vkZpPudTRO_30S3FrfxI2uQYoIUgPePQWk-GOpD6Rnly14bwLEJWvKeoa56BWt6Nt_0Nu4pFCvpylXknJOsajU-x1lU8w5wbRvhmD9qFU_atVbrRV-87z9PfpHYgXkDvgJQ5yydRAs7LHqnWOJsWTbL7ByZStqFZdQaunZ_5eyBz4bwU4</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Chen, Di</creator><creator>Zhao, Xinjie</creator><creator>Sui, Zhigang</creator><creator>Niu, Huan</creator><creator>Chen, Luonan</creator><creator>Hu, Cheng</creator><creator>Xuan, Qiuhui</creator><creator>Hou, Xuhong</creator><creator>Zhang, Rong</creator><creator>Zhou, Lina</creator><creator>Li, Yanli</creator><creator>Yuan, Huiming</creator><creator>Zhang, Yukui</creator><creator>Wu, Jiarui</creator><creator>Zhang, Lihua</creator><creator>Wu, Ren'an</creator><creator>Piao, Hai-Long</creator><creator>Xu, Guowang</creator><creator>Jia, Weiping</creator><general>Ivyspring Int Publ</general><general>Ivyspring International Publisher Pty Ltd</general><general>Ivyspring International Publisher</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6244-2168</orcidid><orcidid>https://orcid.org/0000-0003-4314-2386</orcidid><orcidid>https://orcid.org/0000-0002-2181-4703</orcidid><orcidid>https://orcid.org/0000-0003-4298-3554</orcidid><orcidid>https://orcid.org/0000-0003-2543-1547</orcidid></search><sort><creationdate>20200101</creationdate><title>A multi-omics investigation of the molecular characteristics and classification of six metabolic syndrome relevant diseases</title><author>Chen, Di ; Zhao, Xinjie ; Sui, Zhigang ; Niu, Huan ; Chen, Luonan ; Hu, Cheng ; Xuan, Qiuhui ; Hou, Xuhong ; Zhang, Rong ; Zhou, Lina ; Li, Yanli ; Yuan, Huiming ; Zhang, Yukui ; Wu, Jiarui ; Zhang, Lihua ; Wu, Ren'an ; Piao, Hai-Long ; Xu, Guowang ; Jia, Weiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-1bf249cd4d57a553d2771ef511e114b9a79ebe653824824e97018ba89b58c19f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Blood pressure</topic><topic>Body mass index</topic><topic>Classification</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2 - blood</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Disease</topic><topic>Female</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>High density lipoprotein</topic><topic>Humans</topic><topic>Hyperglycemia</topic><topic>Hyperglycemia - blood</topic><topic>Hyperglycemia - metabolism</topic><topic>Hyperlipidemias - blood</topic><topic>Hyperlipidemias - metabolism</topic><topic>Hypertension</topic><topic>Hypertension - metabolism</topic><topic>Insulin - metabolism</topic><topic>Insulin resistance</topic><topic>Investigations</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>Low density lipoprotein</topic><topic>Male</topic><topic>Medical diagnosis</topic><topic>Medicine, Research &amp; Experimental</topic><topic>Metabolic Diseases - classification</topic><topic>Metabolic Diseases - immunology</topic><topic>Metabolic Diseases - metabolism</topic><topic>Metabolic disorders</topic><topic>Metabolic syndrome</topic><topic>Metabolic Syndrome - classification</topic><topic>Metabolic Syndrome - immunology</topic><topic>Metabolic Syndrome - metabolism</topic><topic>Metabolites</topic><topic>Metabolomics - methods</topic><topic>Middle Aged</topic><topic>Obesity</topic><topic>Obesity - blood</topic><topic>Obesity - metabolism</topic><topic>Overweight</topic><topic>Peptides</topic><topic>Peptidomimetics</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Phosphatidylserines - metabolism</topic><topic>Plasma</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Research &amp; Experimental Medicine</topic><topic>Research Paper</topic><topic>Science &amp; Technology</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Di</creatorcontrib><creatorcontrib>Zhao, Xinjie</creatorcontrib><creatorcontrib>Sui, Zhigang</creatorcontrib><creatorcontrib>Niu, Huan</creatorcontrib><creatorcontrib>Chen, Luonan</creatorcontrib><creatorcontrib>Hu, Cheng</creatorcontrib><creatorcontrib>Xuan, Qiuhui</creatorcontrib><creatorcontrib>Hou, Xuhong</creatorcontrib><creatorcontrib>Zhang, Rong</creatorcontrib><creatorcontrib>Zhou, Lina</creatorcontrib><creatorcontrib>Li, Yanli</creatorcontrib><creatorcontrib>Yuan, Huiming</creatorcontrib><creatorcontrib>Zhang, Yukui</creatorcontrib><creatorcontrib>Wu, Jiarui</creatorcontrib><creatorcontrib>Zhang, Lihua</creatorcontrib><creatorcontrib>Wu, Ren'an</creatorcontrib><creatorcontrib>Piao, Hai-Long</creatorcontrib><creatorcontrib>Xu, Guowang</creatorcontrib><creatorcontrib>Jia, Weiping</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theranostics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Di</au><au>Zhao, Xinjie</au><au>Sui, Zhigang</au><au>Niu, Huan</au><au>Chen, Luonan</au><au>Hu, Cheng</au><au>Xuan, Qiuhui</au><au>Hou, Xuhong</au><au>Zhang, Rong</au><au>Zhou, Lina</au><au>Li, Yanli</au><au>Yuan, Huiming</au><au>Zhang, Yukui</au><au>Wu, Jiarui</au><au>Zhang, Lihua</au><au>Wu, Ren'an</au><au>Piao, Hai-Long</au><au>Xu, Guowang</au><au>Jia, Weiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-omics investigation of the molecular characteristics and classification of six metabolic syndrome relevant diseases</atitle><jtitle>Theranostics</jtitle><stitle>THERANOSTICS</stitle><addtitle>Theranostics</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>5</issue><spage>2029</spage><epage>2046</epage><pages>2029-2046</pages><issn>1838-7640</issn><eissn>1838-7640</eissn><abstract>Metabolic syndrome (MTS) is a cluster of concurrent metabolic abnormal conditions. MTS and its component metabolic diseases are heterogeneous and closely related, making their relationships complicated, thus hindering precision treatment. Methods: We collected seven groups of samples (group a: healthy individuals; group b: obesity; group c: MTS; group d: hyperglycemia, group e: hypertension, group f: hyperlipidemia; group g: type II diabetes, n=7 for each group). We examined the molecular characteristics of each sample by metabolomic, proteomic and peptidomic profiling analysis. The differential molecules (including metabolites, proteins and peptides) between each disease group and the healthy group were recognized by statistical analyses. Furthermore, a two-step clustering workflow which combines multi-omics and clinical information was used to redefine molecularly and clinically differential groups. Meanwhile, molecular, clinical, network and pathway based analyses were used to identify the group-specific biological features. Results: Both shared and disease-specific molecular profiles among the six types of diseases were identified. Meanwhile, the patients were stratified into three distinct groups which were different from original disease definitions but presented significant differences in glucose and lipid metabolism (Group 1: relatively favorable metabolic conditions; Group 2: severe dyslipidemia; Group 3: dysregulated insulin and glucose). Group specific biological signatures were also systematically described. The dyslipidemia group showed higher levels in multiple lipid metabolites like phosphatidylserine and phosphatidylcholine, and showed significant up-regulations in lipid and amino acid metabolism pathways. The glucose dysregulated group showed higher levels in many polypeptides from proteins contributing to immune response. The another group, with better glucose/lipid metabolism ability, showed higher levels in lipid regulating enzymes like the lecithin cholesterol acyltransferase and proteins involved in complement and coagulation cascades. Conclusions: This multi-omics based study provides a general view of the complex relationships and an alternative classification for various metabolic diseases where the cross-talk or compensatory mechanism between the immune and metabolism systems plays a critical role.</abstract><cop>LAKE HAVEN</cop><pub>Ivyspring Int Publ</pub><pmid>32089734</pmid><doi>10.7150/thno.41106</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6244-2168</orcidid><orcidid>https://orcid.org/0000-0003-4314-2386</orcidid><orcidid>https://orcid.org/0000-0002-2181-4703</orcidid><orcidid>https://orcid.org/0000-0003-4298-3554</orcidid><orcidid>https://orcid.org/0000-0003-2543-1547</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1838-7640
ispartof Theranostics, 2020-01, Vol.10 (5), p.2029-2046
issn 1838-7640
1838-7640
language eng
recordid cdi_proquest_journals_2598255207
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Blood pressure
Body mass index
Classification
Diabetes
Diabetes Mellitus, Type 2 - blood
Diabetes Mellitus, Type 2 - metabolism
Disease
Female
Glucose
Glucose - metabolism
High density lipoprotein
Humans
Hyperglycemia
Hyperglycemia - blood
Hyperglycemia - metabolism
Hyperlipidemias - blood
Hyperlipidemias - metabolism
Hypertension
Hypertension - metabolism
Insulin - metabolism
Insulin resistance
Investigations
Life Sciences & Biomedicine
Lipid Metabolism
Lipids
Low density lipoprotein
Male
Medical diagnosis
Medicine, Research & Experimental
Metabolic Diseases - classification
Metabolic Diseases - immunology
Metabolic Diseases - metabolism
Metabolic disorders
Metabolic syndrome
Metabolic Syndrome - classification
Metabolic Syndrome - immunology
Metabolic Syndrome - metabolism
Metabolites
Metabolomics - methods
Middle Aged
Obesity
Obesity - blood
Obesity - metabolism
Overweight
Peptides
Peptidomimetics
Phosphatidylcholines - metabolism
Phosphatidylserines - metabolism
Plasma
Proteomics
Proteomics - methods
Research & Experimental Medicine
Research Paper
Science & Technology
Up-Regulation
title A multi-omics investigation of the molecular characteristics and classification of six metabolic syndrome relevant diseases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-omics%20investigation%20of%20the%20molecular%20characteristics%20and%20classification%20of%20six%20metabolic%20syndrome%20relevant%20diseases&rft.jtitle=Theranostics&rft.au=Chen,%20Di&rft.date=2020-01-01&rft.volume=10&rft.issue=5&rft.spage=2029&rft.epage=2046&rft.pages=2029-2046&rft.issn=1838-7640&rft.eissn=1838-7640&rft_id=info:doi/10.7150/thno.41106&rft_dat=%3Cproquest_webof%3E2363057692%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598255207&rft_id=info:pmid/32089734&rfr_iscdi=true