Speech Signal Autoregression Modeling Based on the Discrete Fourier Transform and Scale-Invariant Measure of Information Discrimination
In this paper, we consider the problem of autoregressive modeling of a speech signal according to the data of its discrete Fourier transform on intervals of one speech frame (several milliseconds). Based on the information-theoretic approach, a novel method, in which two computational procedures, na...
Gespeichert in:
Veröffentlicht in: | Journal of communications technology & electronics 2021-11, Vol.66 (11), p.1266-1273 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1273 |
---|---|
container_issue | 11 |
container_start_page | 1266 |
container_title | Journal of communications technology & electronics |
container_volume | 66 |
creator | Savchenko, V. V. Savchenko, L. V. |
description | In this paper, we consider the problem of autoregressive modeling of a speech signal according to the data of its discrete Fourier transform on intervals of one speech frame (several milliseconds). Based on the information-theoretic approach, a novel method, in which two computational procedures, namely, iterative optimization of autoregressive parameters and their automatic amplitude scaling are separated from each other was developed. A full-scale experiment was set up and carried out. The main advantage of the new method in comparison with its known analogs is shown to be the extremely high rate of convergence of iterations to the optimal solution. |
doi_str_mv | 10.1134/S1064226921110085 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2598101284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A682856293</galeid><sourcerecordid>A682856293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-c6f4ac884e409f3dbcda0288e92acc68dc575afa1c99ec83d367dfddbcb2b3c23</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxiMEEqXwANwscUIixX9ir3NcWgortUIi5Rx57XHW1a6zeBwET8Br4zRIsELIB3tmft_I30xVvWT0gjHRvO0YVQ3nquWMMUq1fFSdMSllraRcPS7vUq7n-tPqGeI9paJVVJxVP7sjgN2RLgzR7Ml6ymOCIQFiGCO5HR3sQxzIO4PgSMnkHZCrgDZBBnI9TilAInfJRPRjOhATHems2UO9id9MCiZmcgsGpwRk9GQTZ8rkufdDl3AI8SF8Xj3xZo_w4vd9Xn25fn93-bG--fRhc7m-qW3DVa6t8o2xWjfQ0NYLt7XOUK41tNxYq7SzciWNN8y2LVgtnFAr513htnwrLBfn1aul7zGNXyfA3N8XE8U69ly2mlHGdVOoi4UaipU-lF_nZGw5Dg7BjhF8KPm10lxLxVtRBK9PBIXJ8D0PZkLsN93nU_bNX-x2whDncUcMwy7jIjnB2YLbNCIm8P2xjM2kHz2j_bz7_p_dFw1fNFjYOED64_L_ol9Jz7JA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598101284</pqid></control><display><type>article</type><title>Speech Signal Autoregression Modeling Based on the Discrete Fourier Transform and Scale-Invariant Measure of Information Discrimination</title><source>Springer Nature - Complete Springer Journals</source><creator>Savchenko, V. V. ; Savchenko, L. V.</creator><creatorcontrib>Savchenko, V. V. ; Savchenko, L. V.</creatorcontrib><description>In this paper, we consider the problem of autoregressive modeling of a speech signal according to the data of its discrete Fourier transform on intervals of one speech frame (several milliseconds). Based on the information-theoretic approach, a novel method, in which two computational procedures, namely, iterative optimization of autoregressive parameters and their automatic amplitude scaling are separated from each other was developed. A full-scale experiment was set up and carried out. The main advantage of the new method in comparison with its known analogs is shown to be the extremely high rate of convergence of iterations to the optimal solution.</description><identifier>ISSN: 1064-2269</identifier><identifier>EISSN: 1555-6557</identifier><identifier>DOI: 10.1134/S1064226921110085</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Autoregressive models ; Communications Engineering ; Engineering ; Fourier transforms ; Information theory ; Iterative methods ; Networks ; Optimization ; Speech ; Theory and Methods of Signal Processing</subject><ispartof>Journal of communications technology & electronics, 2021-11, Vol.66 (11), p.1266-1273</ispartof><rights>Pleiades Publishing, Inc. 2021. ISSN 1064-2269, Journal of Communications Technology and Electronics, 2021, Vol. 66, No. 11, pp. 1266–1273. © Pleiades Publishing, Inc., 2021. Russian Text © The Author(s), 2021, published in Radiotekhnika i Elektronika, 2021, Vol. 66, No. 11, pp. 1100–1108.</rights><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-c6f4ac884e409f3dbcda0288e92acc68dc575afa1c99ec83d367dfddbcb2b3c23</citedby><cites>FETCH-LOGICAL-c426t-c6f4ac884e409f3dbcda0288e92acc68dc575afa1c99ec83d367dfddbcb2b3c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064226921110085$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064226921110085$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Savchenko, V. V.</creatorcontrib><creatorcontrib>Savchenko, L. V.</creatorcontrib><title>Speech Signal Autoregression Modeling Based on the Discrete Fourier Transform and Scale-Invariant Measure of Information Discrimination</title><title>Journal of communications technology & electronics</title><addtitle>J. Commun. Technol. Electron</addtitle><description>In this paper, we consider the problem of autoregressive modeling of a speech signal according to the data of its discrete Fourier transform on intervals of one speech frame (several milliseconds). Based on the information-theoretic approach, a novel method, in which two computational procedures, namely, iterative optimization of autoregressive parameters and their automatic amplitude scaling are separated from each other was developed. A full-scale experiment was set up and carried out. The main advantage of the new method in comparison with its known analogs is shown to be the extremely high rate of convergence of iterations to the optimal solution.</description><subject>Autoregressive models</subject><subject>Communications Engineering</subject><subject>Engineering</subject><subject>Fourier transforms</subject><subject>Information theory</subject><subject>Iterative methods</subject><subject>Networks</subject><subject>Optimization</subject><subject>Speech</subject><subject>Theory and Methods of Signal Processing</subject><issn>1064-2269</issn><issn>1555-6557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kc9u1DAQxiMEEqXwANwscUIixX9ir3NcWgortUIi5Rx57XHW1a6zeBwET8Br4zRIsELIB3tmft_I30xVvWT0gjHRvO0YVQ3nquWMMUq1fFSdMSllraRcPS7vUq7n-tPqGeI9paJVVJxVP7sjgN2RLgzR7Ml6ymOCIQFiGCO5HR3sQxzIO4PgSMnkHZCrgDZBBnI9TilAInfJRPRjOhATHems2UO9id9MCiZmcgsGpwRk9GQTZ8rkufdDl3AI8SF8Xj3xZo_w4vd9Xn25fn93-bG--fRhc7m-qW3DVa6t8o2xWjfQ0NYLt7XOUK41tNxYq7SzciWNN8y2LVgtnFAr513htnwrLBfn1aul7zGNXyfA3N8XE8U69ly2mlHGdVOoi4UaipU-lF_nZGw5Dg7BjhF8KPm10lxLxVtRBK9PBIXJ8D0PZkLsN93nU_bNX-x2whDncUcMwy7jIjnB2YLbNCIm8P2xjM2kHz2j_bz7_p_dFw1fNFjYOED64_L_ol9Jz7JA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Savchenko, V. V.</creator><creator>Savchenko, L. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20211101</creationdate><title>Speech Signal Autoregression Modeling Based on the Discrete Fourier Transform and Scale-Invariant Measure of Information Discrimination</title><author>Savchenko, V. V. ; Savchenko, L. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-c6f4ac884e409f3dbcda0288e92acc68dc575afa1c99ec83d367dfddbcb2b3c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autoregressive models</topic><topic>Communications Engineering</topic><topic>Engineering</topic><topic>Fourier transforms</topic><topic>Information theory</topic><topic>Iterative methods</topic><topic>Networks</topic><topic>Optimization</topic><topic>Speech</topic><topic>Theory and Methods of Signal Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savchenko, V. V.</creatorcontrib><creatorcontrib>Savchenko, L. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of communications technology & electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savchenko, V. V.</au><au>Savchenko, L. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speech Signal Autoregression Modeling Based on the Discrete Fourier Transform and Scale-Invariant Measure of Information Discrimination</atitle><jtitle>Journal of communications technology & electronics</jtitle><stitle>J. Commun. Technol. Electron</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>66</volume><issue>11</issue><spage>1266</spage><epage>1273</epage><pages>1266-1273</pages><issn>1064-2269</issn><eissn>1555-6557</eissn><abstract>In this paper, we consider the problem of autoregressive modeling of a speech signal according to the data of its discrete Fourier transform on intervals of one speech frame (several milliseconds). Based on the information-theoretic approach, a novel method, in which two computational procedures, namely, iterative optimization of autoregressive parameters and their automatic amplitude scaling are separated from each other was developed. A full-scale experiment was set up and carried out. The main advantage of the new method in comparison with its known analogs is shown to be the extremely high rate of convergence of iterations to the optimal solution.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064226921110085</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-2269 |
ispartof | Journal of communications technology & electronics, 2021-11, Vol.66 (11), p.1266-1273 |
issn | 1064-2269 1555-6557 |
language | eng |
recordid | cdi_proquest_journals_2598101284 |
source | Springer Nature - Complete Springer Journals |
subjects | Autoregressive models Communications Engineering Engineering Fourier transforms Information theory Iterative methods Networks Optimization Speech Theory and Methods of Signal Processing |
title | Speech Signal Autoregression Modeling Based on the Discrete Fourier Transform and Scale-Invariant Measure of Information Discrimination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speech%20Signal%20Autoregression%20Modeling%20Based%20on%20the%20Discrete%20Fourier%20Transform%20and%20Scale-Invariant%20Measure%20of%20Information%20Discrimination&rft.jtitle=Journal%20of%20communications%20technology%20&%20electronics&rft.au=Savchenko,%20V.%20V.&rft.date=2021-11-01&rft.volume=66&rft.issue=11&rft.spage=1266&rft.epage=1273&rft.pages=1266-1273&rft.issn=1064-2269&rft.eissn=1555-6557&rft_id=info:doi/10.1134/S1064226921110085&rft_dat=%3Cgale_proqu%3EA682856293%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598101284&rft_id=info:pmid/&rft_galeid=A682856293&rfr_iscdi=true |