Speech Signal Autoregression Modeling Based on the Discrete Fourier Transform and Scale-Invariant Measure of Information Discrimination

In this paper, we consider the problem of autoregressive modeling of a speech signal according to the data of its discrete Fourier transform on intervals of one speech frame (several milliseconds). Based on the information-theoretic approach, a novel method, in which two computational procedures, na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of communications technology & electronics 2021-11, Vol.66 (11), p.1266-1273
Hauptverfasser: Savchenko, V. V., Savchenko, L. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1273
container_issue 11
container_start_page 1266
container_title Journal of communications technology & electronics
container_volume 66
creator Savchenko, V. V.
Savchenko, L. V.
description In this paper, we consider the problem of autoregressive modeling of a speech signal according to the data of its discrete Fourier transform on intervals of one speech frame (several milliseconds). Based on the information-theoretic approach, a novel method, in which two computational procedures, namely, iterative optimization of autoregressive parameters and their automatic amplitude scaling are separated from each other was developed. A full-scale experiment was set up and carried out. The main advantage of the new method in comparison with its known analogs is shown to be the extremely high rate of convergence of iterations to the optimal solution.
doi_str_mv 10.1134/S1064226921110085
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2598101284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A682856293</galeid><sourcerecordid>A682856293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-c6f4ac884e409f3dbcda0288e92acc68dc575afa1c99ec83d367dfddbcb2b3c23</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxiMEEqXwANwscUIixX9ir3NcWgortUIi5Rx57XHW1a6zeBwET8Br4zRIsELIB3tmft_I30xVvWT0gjHRvO0YVQ3nquWMMUq1fFSdMSllraRcPS7vUq7n-tPqGeI9paJVVJxVP7sjgN2RLgzR7Ml6ymOCIQFiGCO5HR3sQxzIO4PgSMnkHZCrgDZBBnI9TilAInfJRPRjOhATHems2UO9id9MCiZmcgsGpwRk9GQTZ8rkufdDl3AI8SF8Xj3xZo_w4vd9Xn25fn93-bG--fRhc7m-qW3DVa6t8o2xWjfQ0NYLt7XOUK41tNxYq7SzciWNN8y2LVgtnFAr513htnwrLBfn1aul7zGNXyfA3N8XE8U69ly2mlHGdVOoi4UaipU-lF_nZGw5Dg7BjhF8KPm10lxLxVtRBK9PBIXJ8D0PZkLsN93nU_bNX-x2whDncUcMwy7jIjnB2YLbNCIm8P2xjM2kHz2j_bz7_p_dFw1fNFjYOED64_L_ol9Jz7JA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598101284</pqid></control><display><type>article</type><title>Speech Signal Autoregression Modeling Based on the Discrete Fourier Transform and Scale-Invariant Measure of Information Discrimination</title><source>Springer Nature - Complete Springer Journals</source><creator>Savchenko, V. V. ; Savchenko, L. V.</creator><creatorcontrib>Savchenko, V. V. ; Savchenko, L. V.</creatorcontrib><description>In this paper, we consider the problem of autoregressive modeling of a speech signal according to the data of its discrete Fourier transform on intervals of one speech frame (several milliseconds). Based on the information-theoretic approach, a novel method, in which two computational procedures, namely, iterative optimization of autoregressive parameters and their automatic amplitude scaling are separated from each other was developed. A full-scale experiment was set up and carried out. The main advantage of the new method in comparison with its known analogs is shown to be the extremely high rate of convergence of iterations to the optimal solution.</description><identifier>ISSN: 1064-2269</identifier><identifier>EISSN: 1555-6557</identifier><identifier>DOI: 10.1134/S1064226921110085</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Autoregressive models ; Communications Engineering ; Engineering ; Fourier transforms ; Information theory ; Iterative methods ; Networks ; Optimization ; Speech ; Theory and Methods of Signal Processing</subject><ispartof>Journal of communications technology &amp; electronics, 2021-11, Vol.66 (11), p.1266-1273</ispartof><rights>Pleiades Publishing, Inc. 2021. ISSN 1064-2269, Journal of Communications Technology and Electronics, 2021, Vol. 66, No. 11, pp. 1266–1273. © Pleiades Publishing, Inc., 2021. Russian Text © The Author(s), 2021, published in Radiotekhnika i Elektronika, 2021, Vol. 66, No. 11, pp. 1100–1108.</rights><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-c6f4ac884e409f3dbcda0288e92acc68dc575afa1c99ec83d367dfddbcb2b3c23</citedby><cites>FETCH-LOGICAL-c426t-c6f4ac884e409f3dbcda0288e92acc68dc575afa1c99ec83d367dfddbcb2b3c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064226921110085$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064226921110085$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Savchenko, V. V.</creatorcontrib><creatorcontrib>Savchenko, L. V.</creatorcontrib><title>Speech Signal Autoregression Modeling Based on the Discrete Fourier Transform and Scale-Invariant Measure of Information Discrimination</title><title>Journal of communications technology &amp; electronics</title><addtitle>J. Commun. Technol. Electron</addtitle><description>In this paper, we consider the problem of autoregressive modeling of a speech signal according to the data of its discrete Fourier transform on intervals of one speech frame (several milliseconds). Based on the information-theoretic approach, a novel method, in which two computational procedures, namely, iterative optimization of autoregressive parameters and their automatic amplitude scaling are separated from each other was developed. A full-scale experiment was set up and carried out. The main advantage of the new method in comparison with its known analogs is shown to be the extremely high rate of convergence of iterations to the optimal solution.</description><subject>Autoregressive models</subject><subject>Communications Engineering</subject><subject>Engineering</subject><subject>Fourier transforms</subject><subject>Information theory</subject><subject>Iterative methods</subject><subject>Networks</subject><subject>Optimization</subject><subject>Speech</subject><subject>Theory and Methods of Signal Processing</subject><issn>1064-2269</issn><issn>1555-6557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kc9u1DAQxiMEEqXwANwscUIixX9ir3NcWgortUIi5Rx57XHW1a6zeBwET8Br4zRIsELIB3tmft_I30xVvWT0gjHRvO0YVQ3nquWMMUq1fFSdMSllraRcPS7vUq7n-tPqGeI9paJVVJxVP7sjgN2RLgzR7Ml6ymOCIQFiGCO5HR3sQxzIO4PgSMnkHZCrgDZBBnI9TilAInfJRPRjOhATHems2UO9id9MCiZmcgsGpwRk9GQTZ8rkufdDl3AI8SF8Xj3xZo_w4vd9Xn25fn93-bG--fRhc7m-qW3DVa6t8o2xWjfQ0NYLt7XOUK41tNxYq7SzciWNN8y2LVgtnFAr513htnwrLBfn1aul7zGNXyfA3N8XE8U69ly2mlHGdVOoi4UaipU-lF_nZGw5Dg7BjhF8KPm10lxLxVtRBK9PBIXJ8D0PZkLsN93nU_bNX-x2whDncUcMwy7jIjnB2YLbNCIm8P2xjM2kHz2j_bz7_p_dFw1fNFjYOED64_L_ol9Jz7JA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Savchenko, V. V.</creator><creator>Savchenko, L. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20211101</creationdate><title>Speech Signal Autoregression Modeling Based on the Discrete Fourier Transform and Scale-Invariant Measure of Information Discrimination</title><author>Savchenko, V. V. ; Savchenko, L. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-c6f4ac884e409f3dbcda0288e92acc68dc575afa1c99ec83d367dfddbcb2b3c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autoregressive models</topic><topic>Communications Engineering</topic><topic>Engineering</topic><topic>Fourier transforms</topic><topic>Information theory</topic><topic>Iterative methods</topic><topic>Networks</topic><topic>Optimization</topic><topic>Speech</topic><topic>Theory and Methods of Signal Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savchenko, V. V.</creatorcontrib><creatorcontrib>Savchenko, L. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of communications technology &amp; electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savchenko, V. V.</au><au>Savchenko, L. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speech Signal Autoregression Modeling Based on the Discrete Fourier Transform and Scale-Invariant Measure of Information Discrimination</atitle><jtitle>Journal of communications technology &amp; electronics</jtitle><stitle>J. Commun. Technol. Electron</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>66</volume><issue>11</issue><spage>1266</spage><epage>1273</epage><pages>1266-1273</pages><issn>1064-2269</issn><eissn>1555-6557</eissn><abstract>In this paper, we consider the problem of autoregressive modeling of a speech signal according to the data of its discrete Fourier transform on intervals of one speech frame (several milliseconds). Based on the information-theoretic approach, a novel method, in which two computational procedures, namely, iterative optimization of autoregressive parameters and their automatic amplitude scaling are separated from each other was developed. A full-scale experiment was set up and carried out. The main advantage of the new method in comparison with its known analogs is shown to be the extremely high rate of convergence of iterations to the optimal solution.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064226921110085</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-2269
ispartof Journal of communications technology & electronics, 2021-11, Vol.66 (11), p.1266-1273
issn 1064-2269
1555-6557
language eng
recordid cdi_proquest_journals_2598101284
source Springer Nature - Complete Springer Journals
subjects Autoregressive models
Communications Engineering
Engineering
Fourier transforms
Information theory
Iterative methods
Networks
Optimization
Speech
Theory and Methods of Signal Processing
title Speech Signal Autoregression Modeling Based on the Discrete Fourier Transform and Scale-Invariant Measure of Information Discrimination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speech%20Signal%20Autoregression%20Modeling%20Based%20on%20the%20Discrete%20Fourier%20Transform%20and%20Scale-Invariant%20Measure%20of%20Information%20Discrimination&rft.jtitle=Journal%20of%20communications%20technology%20&%20electronics&rft.au=Savchenko,%20V.%20V.&rft.date=2021-11-01&rft.volume=66&rft.issue=11&rft.spage=1266&rft.epage=1273&rft.pages=1266-1273&rft.issn=1064-2269&rft.eissn=1555-6557&rft_id=info:doi/10.1134/S1064226921110085&rft_dat=%3Cgale_proqu%3EA682856293%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598101284&rft_id=info:pmid/&rft_galeid=A682856293&rfr_iscdi=true