Inviscid Limit of Vorticity Distributions in the Yudovich Class
We prove that given initial data ω0∈L∞T2, forcing g∈L∞0,T;L∞T2, and any T > 0, the solutions uν of Navier‐Stokes converge strongly in L∞0,T;W1,pT2 for any p ∈ [1, ∞) to the unique Yudovich weak solution u of the Euler equations. A consequence is that vorticity distribution functions converge to t...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2022-01, Vol.75 (1), p.60-82 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82 |
---|---|
container_issue | 1 |
container_start_page | 60 |
container_title | Communications on pure and applied mathematics |
container_volume | 75 |
creator | Constantin, Peter Drivas, Theodore D. Elgindi, Tarek M. |
description | We prove that given initial data ω0∈L∞T2, forcing g∈L∞0,T;L∞T2, and any T > 0, the solutions uν of Navier‐Stokes converge strongly in L∞0,T;W1,pT2 for any p ∈ [1, ∞) to the unique Yudovich weak solution u of the Euler equations. A consequence is that vorticity distribution functions converge to their inviscid counterparts. As a by‐product of the proof, we establish continuity of the Euler solution map for Yudovich solutions in the Lp vorticity topology. The main tool in these proofs is a uniformly controlled loss of regularity property of the linear transport by Yudovich solutions. Our results provide a partial foundation for the Miller‐Robert statistical equilibrium theory of vortices as it applies to slightly viscous fluids. © 2020 Wiley Periodicals LLC. |
doi_str_mv | 10.1002/cpa.21940 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2598072385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598072385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3630-bc9fd5ec49c5f4cf41677ff9b468fd7f895646514cfdcdd6d5ef8a07c596f85d3</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtbqwX8Q8ORh22TzsclJylq1UNCDCp7CNtnQlHZTk2yl_97oevU0DPPMDLwAXGM0wQiVU71vJiWWFJ2AEUayKhDB5SkYIYRRQThF5-Aixk1uMRVkBO4W3cFF7Qxcup1L0Fv47kNy2qUjvHcxBbfqk_NdhK6Dad3Cj974g9NrWG-bGC_BmW22sb36q2Pw9jB_rZ-K5fPjop4tC004QcVKS2tYq6nUzFJtKeZVZa1cUS6sqayQjFPOcB4ZbQzP1ooGVZpJbgUzZAxuhrv74D_7Nia18X3o8ktVMilQVRLBsrodlA4-xtBatQ9u14Sjwkj95KNyPuo3n2yng_1y2_b4P1T1y2zY-AZmkGbG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598072385</pqid></control><display><type>article</type><title>Inviscid Limit of Vorticity Distributions in the Yudovich Class</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Constantin, Peter ; Drivas, Theodore D. ; Elgindi, Tarek M.</creator><creatorcontrib>Constantin, Peter ; Drivas, Theodore D. ; Elgindi, Tarek M.</creatorcontrib><description>We prove that given initial data ω0∈L∞T2, forcing g∈L∞0,T;L∞T2, and any T > 0, the solutions uν of Navier‐Stokes converge strongly in L∞0,T;W1,pT2 for any p ∈ [1, ∞) to the unique Yudovich weak solution u of the Euler equations. A consequence is that vorticity distribution functions converge to their inviscid counterparts. As a by‐product of the proof, we establish continuity of the Euler solution map for Yudovich solutions in the Lp vorticity topology. The main tool in these proofs is a uniformly controlled loss of regularity property of the linear transport by Yudovich solutions. Our results provide a partial foundation for the Miller‐Robert statistical equilibrium theory of vortices as it applies to slightly viscous fluids. © 2020 Wiley Periodicals LLC.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.21940</identifier><language>eng</language><publisher>Melbourne: John Wiley & Sons Australia, Ltd</publisher><subject>Convergence ; Distribution functions ; Euler-Lagrange equation ; Topology ; Viscous fluids ; Vorticity</subject><ispartof>Communications on pure and applied mathematics, 2022-01, Vol.75 (1), p.60-82</ispartof><rights>2020 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3630-bc9fd5ec49c5f4cf41677ff9b468fd7f895646514cfdcdd6d5ef8a07c596f85d3</citedby><cites>FETCH-LOGICAL-c3630-bc9fd5ec49c5f4cf41677ff9b468fd7f895646514cfdcdd6d5ef8a07c596f85d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.21940$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.21940$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Constantin, Peter</creatorcontrib><creatorcontrib>Drivas, Theodore D.</creatorcontrib><creatorcontrib>Elgindi, Tarek M.</creatorcontrib><title>Inviscid Limit of Vorticity Distributions in the Yudovich Class</title><title>Communications on pure and applied mathematics</title><description>We prove that given initial data ω0∈L∞T2, forcing g∈L∞0,T;L∞T2, and any T > 0, the solutions uν of Navier‐Stokes converge strongly in L∞0,T;W1,pT2 for any p ∈ [1, ∞) to the unique Yudovich weak solution u of the Euler equations. A consequence is that vorticity distribution functions converge to their inviscid counterparts. As a by‐product of the proof, we establish continuity of the Euler solution map for Yudovich solutions in the Lp vorticity topology. The main tool in these proofs is a uniformly controlled loss of regularity property of the linear transport by Yudovich solutions. Our results provide a partial foundation for the Miller‐Robert statistical equilibrium theory of vortices as it applies to slightly viscous fluids. © 2020 Wiley Periodicals LLC.</description><subject>Convergence</subject><subject>Distribution functions</subject><subject>Euler-Lagrange equation</subject><subject>Topology</subject><subject>Viscous fluids</subject><subject>Vorticity</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtbqwX8Q8ORh22TzsclJylq1UNCDCp7CNtnQlHZTk2yl_97oevU0DPPMDLwAXGM0wQiVU71vJiWWFJ2AEUayKhDB5SkYIYRRQThF5-Aixk1uMRVkBO4W3cFF7Qxcup1L0Fv47kNy2qUjvHcxBbfqk_NdhK6Dad3Cj974g9NrWG-bGC_BmW22sb36q2Pw9jB_rZ-K5fPjop4tC004QcVKS2tYq6nUzFJtKeZVZa1cUS6sqayQjFPOcB4ZbQzP1ooGVZpJbgUzZAxuhrv74D_7Nia18X3o8ktVMilQVRLBsrodlA4-xtBatQ9u14Sjwkj95KNyPuo3n2yng_1y2_b4P1T1y2zY-AZmkGbG</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Constantin, Peter</creator><creator>Drivas, Theodore D.</creator><creator>Elgindi, Tarek M.</creator><general>John Wiley & Sons Australia, Ltd</general><general>John Wiley and Sons, Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>202201</creationdate><title>Inviscid Limit of Vorticity Distributions in the Yudovich Class</title><author>Constantin, Peter ; Drivas, Theodore D. ; Elgindi, Tarek M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3630-bc9fd5ec49c5f4cf41677ff9b468fd7f895646514cfdcdd6d5ef8a07c596f85d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><topic>Distribution functions</topic><topic>Euler-Lagrange equation</topic><topic>Topology</topic><topic>Viscous fluids</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantin, Peter</creatorcontrib><creatorcontrib>Drivas, Theodore D.</creatorcontrib><creatorcontrib>Elgindi, Tarek M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantin, Peter</au><au>Drivas, Theodore D.</au><au>Elgindi, Tarek M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inviscid Limit of Vorticity Distributions in the Yudovich Class</atitle><jtitle>Communications on pure and applied mathematics</jtitle><date>2022-01</date><risdate>2022</risdate><volume>75</volume><issue>1</issue><spage>60</spage><epage>82</epage><pages>60-82</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><abstract>We prove that given initial data ω0∈L∞T2, forcing g∈L∞0,T;L∞T2, and any T > 0, the solutions uν of Navier‐Stokes converge strongly in L∞0,T;W1,pT2 for any p ∈ [1, ∞) to the unique Yudovich weak solution u of the Euler equations. A consequence is that vorticity distribution functions converge to their inviscid counterparts. As a by‐product of the proof, we establish continuity of the Euler solution map for Yudovich solutions in the Lp vorticity topology. The main tool in these proofs is a uniformly controlled loss of regularity property of the linear transport by Yudovich solutions. Our results provide a partial foundation for the Miller‐Robert statistical equilibrium theory of vortices as it applies to slightly viscous fluids. © 2020 Wiley Periodicals LLC.</abstract><cop>Melbourne</cop><pub>John Wiley & Sons Australia, Ltd</pub><doi>10.1002/cpa.21940</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3640 |
ispartof | Communications on pure and applied mathematics, 2022-01, Vol.75 (1), p.60-82 |
issn | 0010-3640 1097-0312 |
language | eng |
recordid | cdi_proquest_journals_2598072385 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Convergence Distribution functions Euler-Lagrange equation Topology Viscous fluids Vorticity |
title | Inviscid Limit of Vorticity Distributions in the Yudovich Class |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inviscid%20Limit%20of%20Vorticity%20Distributions%20in%20the%20Yudovich%20Class&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Constantin,%20Peter&rft.date=2022-01&rft.volume=75&rft.issue=1&rft.spage=60&rft.epage=82&rft.pages=60-82&rft.issn=0010-3640&rft.eissn=1097-0312&rft_id=info:doi/10.1002/cpa.21940&rft_dat=%3Cproquest_cross%3E2598072385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598072385&rft_id=info:pmid/&rfr_iscdi=true |