Area‐Minimizing Currents mod 2Q: Linear Regularity Theory

We establish a theory of Q‐valued functions minimizing a suitable generalization of the Dirichlet integral. In a second paper the theory will be used to approximate efficiently area minimizing currents mod(p) when p = 2Q, and to establish a first general partial regularity theorem for every p in any...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2022-01, Vol.75 (1), p.83-127
Hauptverfasser: De Lellis, Camillo, Hirsch, Jonas, Marchese, Andrea, Stuvard, Salvatore
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 1
container_start_page 83
container_title Communications on pure and applied mathematics
container_volume 75
creator De Lellis, Camillo
Hirsch, Jonas
Marchese, Andrea
Stuvard, Salvatore
description We establish a theory of Q‐valued functions minimizing a suitable generalization of the Dirichlet integral. In a second paper the theory will be used to approximate efficiently area minimizing currents mod(p) when p = 2Q, and to establish a first general partial regularity theorem for every p in any dimension and codimension . © 2020 Wiley Periodicals LLC.
doi_str_mv 10.1002/cpa.21964
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2598071820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598071820</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2894-8b861a62f654203905252958df2310fe5cd97af254c7fae75a82c8bf6f486093</originalsourceid><addsrcrecordid>eNotkM1Kw0AcxBdRsEYPvkHAc9r__vcju3oqwapQ8YPel226W7e0Sd00SDz5CD6jT2JsPc0MDDPwI-SSwpAC4Kjc2iFSLfkRGVDQeQaM4jEZAFDImORwSs6aZtVHyhUbkJtxdPbn6_sxVGETPkO1TIs2RlftmnRTL1J8uU6noXI2pq9u2a5tDLsunb25Onbn5MTbdeMu_jUhs8ntrLjPpk93D8V4mq1QaZ6puZLUSvRScASmQaBALdTCI6PgnSgXOrceBS9zb10urMJSzb30XEnQLCFXh9ltrN9b1-zMqm5j1T8aFFpBTlU_m5DRofUR1q4z2xg2NnaGgvnjYnouZs_FFM_jvWG_S19WJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598071820</pqid></control><display><type>article</type><title>Area‐Minimizing Currents mod 2Q: Linear Regularity Theory</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>De Lellis, Camillo ; Hirsch, Jonas ; Marchese, Andrea ; Stuvard, Salvatore</creator><creatorcontrib>De Lellis, Camillo ; Hirsch, Jonas ; Marchese, Andrea ; Stuvard, Salvatore</creatorcontrib><description>We establish a theory of Q‐valued functions minimizing a suitable generalization of the Dirichlet integral. In a second paper the theory will be used to approximate efficiently area minimizing currents mod(p) when p = 2Q, and to establish a first general partial regularity theorem for every p in any dimension and codimension . © 2020 Wiley Periodicals LLC.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.21964</identifier><language>eng</language><publisher>Melbourne: John Wiley &amp; Sons Australia, Ltd</publisher><subject>Dirichlet problem ; Regularity</subject><ispartof>Communications on pure and applied mathematics, 2022-01, Vol.75 (1), p.83-127</ispartof><rights>2020 Wiley Periodicals LLC.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.21964$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.21964$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>De Lellis, Camillo</creatorcontrib><creatorcontrib>Hirsch, Jonas</creatorcontrib><creatorcontrib>Marchese, Andrea</creatorcontrib><creatorcontrib>Stuvard, Salvatore</creatorcontrib><title>Area‐Minimizing Currents mod 2Q: Linear Regularity Theory</title><title>Communications on pure and applied mathematics</title><description>We establish a theory of Q‐valued functions minimizing a suitable generalization of the Dirichlet integral. In a second paper the theory will be used to approximate efficiently area minimizing currents mod(p) when p = 2Q, and to establish a first general partial regularity theorem for every p in any dimension and codimension . © 2020 Wiley Periodicals LLC.</description><subject>Dirichlet problem</subject><subject>Regularity</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNotkM1Kw0AcxBdRsEYPvkHAc9r__vcju3oqwapQ8YPel226W7e0Sd00SDz5CD6jT2JsPc0MDDPwI-SSwpAC4Kjc2iFSLfkRGVDQeQaM4jEZAFDImORwSs6aZtVHyhUbkJtxdPbn6_sxVGETPkO1TIs2RlftmnRTL1J8uU6noXI2pq9u2a5tDLsunb25Onbn5MTbdeMu_jUhs8ntrLjPpk93D8V4mq1QaZ6puZLUSvRScASmQaBALdTCI6PgnSgXOrceBS9zb10urMJSzb30XEnQLCFXh9ltrN9b1-zMqm5j1T8aFFpBTlU_m5DRofUR1q4z2xg2NnaGgvnjYnouZs_FFM_jvWG_S19WJg</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>De Lellis, Camillo</creator><creator>Hirsch, Jonas</creator><creator>Marchese, Andrea</creator><creator>Stuvard, Salvatore</creator><general>John Wiley &amp; Sons Australia, Ltd</general><general>John Wiley and Sons, Limited</general><scope>24P</scope><scope>JQ2</scope></search><sort><creationdate>202201</creationdate><title>Area‐Minimizing Currents mod 2Q: Linear Regularity Theory</title><author>De Lellis, Camillo ; Hirsch, Jonas ; Marchese, Andrea ; Stuvard, Salvatore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2894-8b861a62f654203905252958df2310fe5cd97af254c7fae75a82c8bf6f486093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Dirichlet problem</topic><topic>Regularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Lellis, Camillo</creatorcontrib><creatorcontrib>Hirsch, Jonas</creatorcontrib><creatorcontrib>Marchese, Andrea</creatorcontrib><creatorcontrib>Stuvard, Salvatore</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Lellis, Camillo</au><au>Hirsch, Jonas</au><au>Marchese, Andrea</au><au>Stuvard, Salvatore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Area‐Minimizing Currents mod 2Q: Linear Regularity Theory</atitle><jtitle>Communications on pure and applied mathematics</jtitle><date>2022-01</date><risdate>2022</risdate><volume>75</volume><issue>1</issue><spage>83</spage><epage>127</epage><pages>83-127</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><abstract>We establish a theory of Q‐valued functions minimizing a suitable generalization of the Dirichlet integral. In a second paper the theory will be used to approximate efficiently area minimizing currents mod(p) when p = 2Q, and to establish a first general partial regularity theorem for every p in any dimension and codimension . © 2020 Wiley Periodicals LLC.</abstract><cop>Melbourne</cop><pub>John Wiley &amp; Sons Australia, Ltd</pub><doi>10.1002/cpa.21964</doi><tpages>46</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3640
ispartof Communications on pure and applied mathematics, 2022-01, Vol.75 (1), p.83-127
issn 0010-3640
1097-0312
language eng
recordid cdi_proquest_journals_2598071820
source Wiley Online Library Journals Frontfile Complete
subjects Dirichlet problem
Regularity
title Area‐Minimizing Currents mod 2Q: Linear Regularity Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Area%E2%80%90Minimizing%20Currents%20mod%202Q:%20Linear%20Regularity%20Theory&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=De%20Lellis,%20Camillo&rft.date=2022-01&rft.volume=75&rft.issue=1&rft.spage=83&rft.epage=127&rft.pages=83-127&rft.issn=0010-3640&rft.eissn=1097-0312&rft_id=info:doi/10.1002/cpa.21964&rft_dat=%3Cproquest_wiley%3E2598071820%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598071820&rft_id=info:pmid/&rfr_iscdi=true