Universal Families of Eulerian Multiple Zeta Values in Positive Characteristics
We study positive characteristic multiple zeta values associated to general curves over \(\mathbb F_q\) together with an \(\mathbb F_q\)-rational point \(\infty\) as introduced by Thakur. For the case of the projective line these values were defined as analogues of classical multiple zeta values. In...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kwun Chung Tuan Ngo Dac Pellarin, Federico |
description | We study positive characteristic multiple zeta values associated to general curves over \(\mathbb F_q\) together with an \(\mathbb F_q\)-rational point \(\infty\) as introduced by Thakur. For the case of the projective line these values were defined as analogues of classical multiple zeta values. In the present paper we first establish a general non-commutative factorization of exponential series associated to certain lattices of rank one. Next we introduce universal families of multiple zeta values of Thakur and show that they are Eulerian in full generality. In particular, we prove a conjecture of Lara Rodriguez and Thakur arXiv:2003.12910. One of the main ingredients of the proofs is the notion of L-series in Tate algebras introduced by the third author arXiv:1107.4511 in 2012. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2597941744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597941744</sourcerecordid><originalsourceid>FETCH-proquest_journals_25979417443</originalsourceid><addsrcrecordid>eNqNy7EKwjAUheEgCBbtOwScCzVNrZ1Li4vooA4u5VJSvCUmNTfx-c3gAzid4Xz_giWiKHbZQQqxYinRlOe52FeiLIuEnW8GP8oRaN7BCzUq4nbkbdDKIRh-CtrjrBV_KA_8DjpEgIZfLKGPJW-e4GDwUZPHgTZsOYImlf52zbZde22O2ezsO7a-n2xwJl69KOuqlrtKyuI_9QUuyj7f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597941744</pqid></control><display><type>article</type><title>Universal Families of Eulerian Multiple Zeta Values in Positive Characteristics</title><source>Free E- Journals</source><creator>Kwun Chung ; Tuan Ngo Dac ; Pellarin, Federico</creator><creatorcontrib>Kwun Chung ; Tuan Ngo Dac ; Pellarin, Federico</creatorcontrib><description>We study positive characteristic multiple zeta values associated to general curves over \(\mathbb F_q\) together with an \(\mathbb F_q\)-rational point \(\infty\) as introduced by Thakur. For the case of the projective line these values were defined as analogues of classical multiple zeta values. In the present paper we first establish a general non-commutative factorization of exponential series associated to certain lattices of rank one. Next we introduce universal families of multiple zeta values of Thakur and show that they are Eulerian in full generality. In particular, we prove a conjecture of Lara Rodriguez and Thakur arXiv:2003.12910. One of the main ingredients of the proofs is the notion of L-series in Tate algebras introduced by the third author arXiv:1107.4511 in 2012.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Lattices</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kwun Chung</creatorcontrib><creatorcontrib>Tuan Ngo Dac</creatorcontrib><creatorcontrib>Pellarin, Federico</creatorcontrib><title>Universal Families of Eulerian Multiple Zeta Values in Positive Characteristics</title><title>arXiv.org</title><description>We study positive characteristic multiple zeta values associated to general curves over \(\mathbb F_q\) together with an \(\mathbb F_q\)-rational point \(\infty\) as introduced by Thakur. For the case of the projective line these values were defined as analogues of classical multiple zeta values. In the present paper we first establish a general non-commutative factorization of exponential series associated to certain lattices of rank one. Next we introduce universal families of multiple zeta values of Thakur and show that they are Eulerian in full generality. In particular, we prove a conjecture of Lara Rodriguez and Thakur arXiv:2003.12910. One of the main ingredients of the proofs is the notion of L-series in Tate algebras introduced by the third author arXiv:1107.4511 in 2012.</description><subject>Lattices</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNy7EKwjAUheEgCBbtOwScCzVNrZ1Li4vooA4u5VJSvCUmNTfx-c3gAzid4Xz_giWiKHbZQQqxYinRlOe52FeiLIuEnW8GP8oRaN7BCzUq4nbkbdDKIRh-CtrjrBV_KA_8DjpEgIZfLKGPJW-e4GDwUZPHgTZsOYImlf52zbZde22O2ezsO7a-n2xwJl69KOuqlrtKyuI_9QUuyj7f</recordid><startdate>20211112</startdate><enddate>20211112</enddate><creator>Kwun Chung</creator><creator>Tuan Ngo Dac</creator><creator>Pellarin, Federico</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211112</creationdate><title>Universal Families of Eulerian Multiple Zeta Values in Positive Characteristics</title><author>Kwun Chung ; Tuan Ngo Dac ; Pellarin, Federico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25979417443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Lattices</topic><toplevel>online_resources</toplevel><creatorcontrib>Kwun Chung</creatorcontrib><creatorcontrib>Tuan Ngo Dac</creatorcontrib><creatorcontrib>Pellarin, Federico</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwun Chung</au><au>Tuan Ngo Dac</au><au>Pellarin, Federico</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Universal Families of Eulerian Multiple Zeta Values in Positive Characteristics</atitle><jtitle>arXiv.org</jtitle><date>2021-11-12</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We study positive characteristic multiple zeta values associated to general curves over \(\mathbb F_q\) together with an \(\mathbb F_q\)-rational point \(\infty\) as introduced by Thakur. For the case of the projective line these values were defined as analogues of classical multiple zeta values. In the present paper we first establish a general non-commutative factorization of exponential series associated to certain lattices of rank one. Next we introduce universal families of multiple zeta values of Thakur and show that they are Eulerian in full generality. In particular, we prove a conjecture of Lara Rodriguez and Thakur arXiv:2003.12910. One of the main ingredients of the proofs is the notion of L-series in Tate algebras introduced by the third author arXiv:1107.4511 in 2012.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2597941744 |
source | Free E- Journals |
subjects | Lattices |
title | Universal Families of Eulerian Multiple Zeta Values in Positive Characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Universal%20Families%20of%20Eulerian%20Multiple%20Zeta%20Values%20in%20Positive%20Characteristics&rft.jtitle=arXiv.org&rft.au=Kwun%20Chung&rft.date=2021-11-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2597941744%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597941744&rft_id=info:pmid/&rfr_iscdi=true |