Interpretable ECG classification via a query-based latent space traversal (qLST)

Electrocardiography (ECG) is an effective and non-invasive diagnostic tool that measures the electrical activity of the heart. Interpretation of ECG signals to detect various abnormalities is a challenging task that requires expertise. Recently, the use of deep neural networks for ECG classification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-11
Hauptverfasser: Vessies, Melle B, Vadgama, Sharvaree P, Rutger R van de Leur, Doevendans, Pieter A, Hassink, Rutger J, Bekkers, Erik, René van Es
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Vessies, Melle B
Vadgama, Sharvaree P
Rutger R van de Leur
Doevendans, Pieter A
Hassink, Rutger J
Bekkers, Erik
René van Es
description Electrocardiography (ECG) is an effective and non-invasive diagnostic tool that measures the electrical activity of the heart. Interpretation of ECG signals to detect various abnormalities is a challenging task that requires expertise. Recently, the use of deep neural networks for ECG classification to aid medical practitioners has become popular, but their black box nature hampers clinical implementation. Several saliency-based interpretability techniques have been proposed, but they only indicate the location of important features and not the actual features. We present a novel interpretability technique called qLST, a query-based latent space traversal technique that is able to provide explanations for any ECG classification model. With qLST, we train a neural network that learns to traverse in the latent space of a variational autoencoder trained on a large university hospital dataset with over 800,000 ECGs annotated for 28 diseases. We demonstrate through experiments that we can explain different black box classifiers by generating ECGs through these traversals.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2597941497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597941497</sourcerecordid><originalsourceid>FETCH-proquest_journals_25979414973</originalsourceid><addsrcrecordid>eNqNjMsKgkAUQIcgSMp_uNCmFoLOaOZa7AEtgtzL1a6gDD7mjkJ_n4s-oNVZnMNZCUcqFXjnUMqNcJlb3_flKZZRpBzxvHeWzGDIYqkJsvQKlUbmpm4qtE3fwdwgIIwTmY9XItMbNFrqLPCAFYE1OJNh1HAYH6_8uBPrGjWT--NW7C9Znt68wfTLhG3R9pPpFlXIKImTMAiTWP1XfQEn_D5z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597941497</pqid></control><display><type>article</type><title>Interpretable ECG classification via a query-based latent space traversal (qLST)</title><source>Free E- Journals</source><creator>Vessies, Melle B ; Vadgama, Sharvaree P ; Rutger R van de Leur ; Doevendans, Pieter A ; Hassink, Rutger J ; Bekkers, Erik ; René van Es</creator><creatorcontrib>Vessies, Melle B ; Vadgama, Sharvaree P ; Rutger R van de Leur ; Doevendans, Pieter A ; Hassink, Rutger J ; Bekkers, Erik ; René van Es</creatorcontrib><description>Electrocardiography (ECG) is an effective and non-invasive diagnostic tool that measures the electrical activity of the heart. Interpretation of ECG signals to detect various abnormalities is a challenging task that requires expertise. Recently, the use of deep neural networks for ECG classification to aid medical practitioners has become popular, but their black box nature hampers clinical implementation. Several saliency-based interpretability techniques have been proposed, but they only indicate the location of important features and not the actual features. We present a novel interpretability technique called qLST, a query-based latent space traversal technique that is able to provide explanations for any ECG classification model. With qLST, we train a neural network that learns to traverse in the latent space of a variational autoencoder trained on a large university hospital dataset with over 800,000 ECGs annotated for 28 diseases. We demonstrate through experiments that we can explain different black box classifiers by generating ECGs through these traversals.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Abnormalities ; Artificial neural networks ; Classification ; Electrocardiography ; Neural networks</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Vessies, Melle B</creatorcontrib><creatorcontrib>Vadgama, Sharvaree P</creatorcontrib><creatorcontrib>Rutger R van de Leur</creatorcontrib><creatorcontrib>Doevendans, Pieter A</creatorcontrib><creatorcontrib>Hassink, Rutger J</creatorcontrib><creatorcontrib>Bekkers, Erik</creatorcontrib><creatorcontrib>René van Es</creatorcontrib><title>Interpretable ECG classification via a query-based latent space traversal (qLST)</title><title>arXiv.org</title><description>Electrocardiography (ECG) is an effective and non-invasive diagnostic tool that measures the electrical activity of the heart. Interpretation of ECG signals to detect various abnormalities is a challenging task that requires expertise. Recently, the use of deep neural networks for ECG classification to aid medical practitioners has become popular, but their black box nature hampers clinical implementation. Several saliency-based interpretability techniques have been proposed, but they only indicate the location of important features and not the actual features. We present a novel interpretability technique called qLST, a query-based latent space traversal technique that is able to provide explanations for any ECG classification model. With qLST, we train a neural network that learns to traverse in the latent space of a variational autoencoder trained on a large university hospital dataset with over 800,000 ECGs annotated for 28 diseases. We demonstrate through experiments that we can explain different black box classifiers by generating ECGs through these traversals.</description><subject>Abnormalities</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Electrocardiography</subject><subject>Neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKgkAUQIcgSMp_uNCmFoLOaOZa7AEtgtzL1a6gDD7mjkJ_n4s-oNVZnMNZCUcqFXjnUMqNcJlb3_flKZZRpBzxvHeWzGDIYqkJsvQKlUbmpm4qtE3fwdwgIIwTmY9XItMbNFrqLPCAFYE1OJNh1HAYH6_8uBPrGjWT--NW7C9Znt68wfTLhG3R9pPpFlXIKImTMAiTWP1XfQEn_D5z</recordid><startdate>20211119</startdate><enddate>20211119</enddate><creator>Vessies, Melle B</creator><creator>Vadgama, Sharvaree P</creator><creator>Rutger R van de Leur</creator><creator>Doevendans, Pieter A</creator><creator>Hassink, Rutger J</creator><creator>Bekkers, Erik</creator><creator>René van Es</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211119</creationdate><title>Interpretable ECG classification via a query-based latent space traversal (qLST)</title><author>Vessies, Melle B ; Vadgama, Sharvaree P ; Rutger R van de Leur ; Doevendans, Pieter A ; Hassink, Rutger J ; Bekkers, Erik ; René van Es</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25979414973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abnormalities</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Electrocardiography</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Vessies, Melle B</creatorcontrib><creatorcontrib>Vadgama, Sharvaree P</creatorcontrib><creatorcontrib>Rutger R van de Leur</creatorcontrib><creatorcontrib>Doevendans, Pieter A</creatorcontrib><creatorcontrib>Hassink, Rutger J</creatorcontrib><creatorcontrib>Bekkers, Erik</creatorcontrib><creatorcontrib>René van Es</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vessies, Melle B</au><au>Vadgama, Sharvaree P</au><au>Rutger R van de Leur</au><au>Doevendans, Pieter A</au><au>Hassink, Rutger J</au><au>Bekkers, Erik</au><au>René van Es</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Interpretable ECG classification via a query-based latent space traversal (qLST)</atitle><jtitle>arXiv.org</jtitle><date>2021-11-19</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Electrocardiography (ECG) is an effective and non-invasive diagnostic tool that measures the electrical activity of the heart. Interpretation of ECG signals to detect various abnormalities is a challenging task that requires expertise. Recently, the use of deep neural networks for ECG classification to aid medical practitioners has become popular, but their black box nature hampers clinical implementation. Several saliency-based interpretability techniques have been proposed, but they only indicate the location of important features and not the actual features. We present a novel interpretability technique called qLST, a query-based latent space traversal technique that is able to provide explanations for any ECG classification model. With qLST, we train a neural network that learns to traverse in the latent space of a variational autoencoder trained on a large university hospital dataset with over 800,000 ECGs annotated for 28 diseases. We demonstrate through experiments that we can explain different black box classifiers by generating ECGs through these traversals.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2597941497
source Free E- Journals
subjects Abnormalities
Artificial neural networks
Classification
Electrocardiography
Neural networks
title Interpretable ECG classification via a query-based latent space traversal (qLST)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Interpretable%20ECG%20classification%20via%20a%20query-based%20latent%20space%20traversal%20(qLST)&rft.jtitle=arXiv.org&rft.au=Vessies,%20Melle%20B&rft.date=2021-11-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2597941497%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597941497&rft_id=info:pmid/&rfr_iscdi=true