FILIP: Fine-grained Interactive Language-Image Pre-Training
Unsupervised large-scale vision-language pre-training has shown promising advances on various downstream tasks. Existing methods often model the cross-modal interaction either via the similarity of the global feature of each modality which misses sufficient information, or finer-grained interactions...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-11 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Yao, Lewei Huang, Runhui Hou, Lu Lu, Guansong Niu, Minzhe Xu, Hang Liang, Xiaodan Li, Zhenguo Jiang, Xin Xu, Chunjing |
description | Unsupervised large-scale vision-language pre-training has shown promising advances on various downstream tasks. Existing methods often model the cross-modal interaction either via the similarity of the global feature of each modality which misses sufficient information, or finer-grained interactions using cross/self-attention upon visual and textual tokens. However, cross/self-attention suffers from inferior efficiency in both training and inference. In this paper, we introduce a large-scale Fine-grained Interactive Language-Image Pre-training (FILIP) to achieve finer-level alignment through a cross-modal late interaction mechanism, which uses a token-wise maximum similarity between visual and textual tokens to guide the contrastive objective. FILIP successfully leverages the finer-grained expressiveness between image patches and textual words by modifying only contrastive loss, while simultaneously gaining the ability to pre-compute image and text representations offline at inference, keeping both large-scale training and inference efficient. Furthermore, we construct a new large-scale image-text pair dataset called FILIP300M for pre-training. Experiments show that FILIP achieves state-of-the-art performance on multiple downstream vision-language tasks including zero-shot image classification and image-text retrieval. The visualization on word-patch alignment further shows that FILIP can learn meaningful fine-grained features with promising localization ability. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2597940374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597940374</sourcerecordid><originalsourceid>FETCH-proquest_journals_25979403743</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdvP08QywUnDLzEvVTS9KBFIpCp55JalFicklmWWpCj6Jeemliempup65QFIhoChVNwSkLDMvnYeBNS0xpziVF0pzMyi7uYY4e-gWFOUXlqYWl8Rn5ZcW5QGl4o1MLc0tTQyMzU2MiVMFAGG_Nh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597940374</pqid></control><display><type>article</type><title>FILIP: Fine-grained Interactive Language-Image Pre-Training</title><source>Free E- Journals</source><creator>Yao, Lewei ; Huang, Runhui ; Hou, Lu ; Lu, Guansong ; Niu, Minzhe ; Xu, Hang ; Liang, Xiaodan ; Li, Zhenguo ; Jiang, Xin ; Xu, Chunjing</creator><creatorcontrib>Yao, Lewei ; Huang, Runhui ; Hou, Lu ; Lu, Guansong ; Niu, Minzhe ; Xu, Hang ; Liang, Xiaodan ; Li, Zhenguo ; Jiang, Xin ; Xu, Chunjing</creatorcontrib><description>Unsupervised large-scale vision-language pre-training has shown promising advances on various downstream tasks. Existing methods often model the cross-modal interaction either via the similarity of the global feature of each modality which misses sufficient information, or finer-grained interactions using cross/self-attention upon visual and textual tokens. However, cross/self-attention suffers from inferior efficiency in both training and inference. In this paper, we introduce a large-scale Fine-grained Interactive Language-Image Pre-training (FILIP) to achieve finer-level alignment through a cross-modal late interaction mechanism, which uses a token-wise maximum similarity between visual and textual tokens to guide the contrastive objective. FILIP successfully leverages the finer-grained expressiveness between image patches and textual words by modifying only contrastive loss, while simultaneously gaining the ability to pre-compute image and text representations offline at inference, keeping both large-scale training and inference efficient. Furthermore, we construct a new large-scale image-text pair dataset called FILIP300M for pre-training. Experiments show that FILIP achieves state-of-the-art performance on multiple downstream vision-language tasks including zero-shot image classification and image-text retrieval. The visualization on word-patch alignment further shows that FILIP can learn meaningful fine-grained features with promising localization ability.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alignment ; Image classification ; Inference ; Similarity ; Training ; Vision</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Yao, Lewei</creatorcontrib><creatorcontrib>Huang, Runhui</creatorcontrib><creatorcontrib>Hou, Lu</creatorcontrib><creatorcontrib>Lu, Guansong</creatorcontrib><creatorcontrib>Niu, Minzhe</creatorcontrib><creatorcontrib>Xu, Hang</creatorcontrib><creatorcontrib>Liang, Xiaodan</creatorcontrib><creatorcontrib>Li, Zhenguo</creatorcontrib><creatorcontrib>Jiang, Xin</creatorcontrib><creatorcontrib>Xu, Chunjing</creatorcontrib><title>FILIP: Fine-grained Interactive Language-Image Pre-Training</title><title>arXiv.org</title><description>Unsupervised large-scale vision-language pre-training has shown promising advances on various downstream tasks. Existing methods often model the cross-modal interaction either via the similarity of the global feature of each modality which misses sufficient information, or finer-grained interactions using cross/self-attention upon visual and textual tokens. However, cross/self-attention suffers from inferior efficiency in both training and inference. In this paper, we introduce a large-scale Fine-grained Interactive Language-Image Pre-training (FILIP) to achieve finer-level alignment through a cross-modal late interaction mechanism, which uses a token-wise maximum similarity between visual and textual tokens to guide the contrastive objective. FILIP successfully leverages the finer-grained expressiveness between image patches and textual words by modifying only contrastive loss, while simultaneously gaining the ability to pre-compute image and text representations offline at inference, keeping both large-scale training and inference efficient. Furthermore, we construct a new large-scale image-text pair dataset called FILIP300M for pre-training. Experiments show that FILIP achieves state-of-the-art performance on multiple downstream vision-language tasks including zero-shot image classification and image-text retrieval. The visualization on word-patch alignment further shows that FILIP can learn meaningful fine-grained features with promising localization ability.</description><subject>Alignment</subject><subject>Image classification</subject><subject>Inference</subject><subject>Similarity</subject><subject>Training</subject><subject>Vision</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdvP08QywUnDLzEvVTS9KBFIpCp55JalFicklmWWpCj6Jeemliempup65QFIhoChVNwSkLDMvnYeBNS0xpziVF0pzMyi7uYY4e-gWFOUXlqYWl8Rn5ZcW5QGl4o1MLc0tTQyMzU2MiVMFAGG_Nh0</recordid><startdate>20211109</startdate><enddate>20211109</enddate><creator>Yao, Lewei</creator><creator>Huang, Runhui</creator><creator>Hou, Lu</creator><creator>Lu, Guansong</creator><creator>Niu, Minzhe</creator><creator>Xu, Hang</creator><creator>Liang, Xiaodan</creator><creator>Li, Zhenguo</creator><creator>Jiang, Xin</creator><creator>Xu, Chunjing</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211109</creationdate><title>FILIP: Fine-grained Interactive Language-Image Pre-Training</title><author>Yao, Lewei ; Huang, Runhui ; Hou, Lu ; Lu, Guansong ; Niu, Minzhe ; Xu, Hang ; Liang, Xiaodan ; Li, Zhenguo ; Jiang, Xin ; Xu, Chunjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25979403743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alignment</topic><topic>Image classification</topic><topic>Inference</topic><topic>Similarity</topic><topic>Training</topic><topic>Vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Yao, Lewei</creatorcontrib><creatorcontrib>Huang, Runhui</creatorcontrib><creatorcontrib>Hou, Lu</creatorcontrib><creatorcontrib>Lu, Guansong</creatorcontrib><creatorcontrib>Niu, Minzhe</creatorcontrib><creatorcontrib>Xu, Hang</creatorcontrib><creatorcontrib>Liang, Xiaodan</creatorcontrib><creatorcontrib>Li, Zhenguo</creatorcontrib><creatorcontrib>Jiang, Xin</creatorcontrib><creatorcontrib>Xu, Chunjing</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Lewei</au><au>Huang, Runhui</au><au>Hou, Lu</au><au>Lu, Guansong</au><au>Niu, Minzhe</au><au>Xu, Hang</au><au>Liang, Xiaodan</au><au>Li, Zhenguo</au><au>Jiang, Xin</au><au>Xu, Chunjing</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>FILIP: Fine-grained Interactive Language-Image Pre-Training</atitle><jtitle>arXiv.org</jtitle><date>2021-11-09</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Unsupervised large-scale vision-language pre-training has shown promising advances on various downstream tasks. Existing methods often model the cross-modal interaction either via the similarity of the global feature of each modality which misses sufficient information, or finer-grained interactions using cross/self-attention upon visual and textual tokens. However, cross/self-attention suffers from inferior efficiency in both training and inference. In this paper, we introduce a large-scale Fine-grained Interactive Language-Image Pre-training (FILIP) to achieve finer-level alignment through a cross-modal late interaction mechanism, which uses a token-wise maximum similarity between visual and textual tokens to guide the contrastive objective. FILIP successfully leverages the finer-grained expressiveness between image patches and textual words by modifying only contrastive loss, while simultaneously gaining the ability to pre-compute image and text representations offline at inference, keeping both large-scale training and inference efficient. Furthermore, we construct a new large-scale image-text pair dataset called FILIP300M for pre-training. Experiments show that FILIP achieves state-of-the-art performance on multiple downstream vision-language tasks including zero-shot image classification and image-text retrieval. The visualization on word-patch alignment further shows that FILIP can learn meaningful fine-grained features with promising localization ability.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2597940374 |
source | Free E- Journals |
subjects | Alignment Image classification Inference Similarity Training Vision |
title | FILIP: Fine-grained Interactive Language-Image Pre-Training |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=FILIP:%20Fine-grained%20Interactive%20Language-Image%20Pre-Training&rft.jtitle=arXiv.org&rft.au=Yao,%20Lewei&rft.date=2021-11-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2597940374%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597940374&rft_id=info:pmid/&rfr_iscdi=true |