CFD and Machine Learning based Simulation of Flow and Heat Transfer Characteristics of Micro Lattice Structures

In this paper, systematic CFD analysis using ANSYS Fluent was carried out to generate the dataset for developing the Machine Learning model, which predicts the average final temperature of water and the pressure drop from the set of input parameters considered for applications. There are six micro l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2021-11, Vol.850 (1), p.12034
Hauptverfasser: Deb, Disha, Rajan, Harish, Kundu, Rajiv, Mohan, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12034
container_title IOP conference series. Earth and environmental science
container_volume 850
creator Deb, Disha
Rajan, Harish
Kundu, Rajiv
Mohan, R
description In this paper, systematic CFD analysis using ANSYS Fluent was carried out to generate the dataset for developing the Machine Learning model, which predicts the average final temperature of water and the pressure drop from the set of input parameters considered for applications. There are six micro lattice structures, kagome, tetrahedral, pyramidal, hexagonal, windward bent and hexagonal-windward bent, modelled for this study using FUSION 360 by Autodesk. The study of heat transfer between liquid water and the micro lattice structures realized with the independent variables, initial fluid flow velocity, lattice temperature, and fluid temperature as well as lattice materials and its different structures. About 2146 output data of average final fluid temperature and the pressure drop were collected from the CFD simulations by varying input parameters. To predict the output parameter against the set of input parameters, Machine Learning model with regression based classification algorithm was adopted while training the ML model. The quality metric of the ML model was calculated using residual sum of squares method. The final average temperature of the fluid and pressure drop as predicted by the ML model is closer to simulated data.
doi_str_mv 10.1088/1755-1315/850/1/012034
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2597842447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597842447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3224-a6c81bb338442ba8a7d30dc465b67efca62e127f277463d7fe239daf183508313</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKd_QQLeeFObrzbZpczNCRtebF6H0zRxGVtbkxbx39tamQiCVwnJ877n8ETRNcF3BEuZEJGmMWEkTWSKE5JgQjHjJ9Ho-HF6vGNxHl2EsMM4E5xNRlE1nT8gKAu0Ar11pUFLA7505SvKIZgCrd2h3UPjqhJVFs331fsXvTDQoI2HMljj0XQLHnRjvAuN06EnV077Ci2h6R4MWje-1U3rTbiMzizsg7n6PsfRy3y2mS7i5fPj0_R-GWtGKY8h05LkOWOSc5qDBFEwXGiepXkmjNWQUUOosFQInrFCWEPZpABLJEuxZISNo5uht_bVW2tCo3ZV68tupKLpREhOORcdlQ1Ut2wI3lhVe3cA_6EIVr1c1XtTvUPVyVVEDXK7IB2Crqp_mv8N3f4Rms3WvzBVF5Z9Ajsmh9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597842447</pqid></control><display><type>article</type><title>CFD and Machine Learning based Simulation of Flow and Heat Transfer Characteristics of Micro Lattice Structures</title><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Deb, Disha ; Rajan, Harish ; Kundu, Rajiv ; Mohan, R</creator><creatorcontrib>Deb, Disha ; Rajan, Harish ; Kundu, Rajiv ; Mohan, R</creatorcontrib><description>In this paper, systematic CFD analysis using ANSYS Fluent was carried out to generate the dataset for developing the Machine Learning model, which predicts the average final temperature of water and the pressure drop from the set of input parameters considered for applications. There are six micro lattice structures, kagome, tetrahedral, pyramidal, hexagonal, windward bent and hexagonal-windward bent, modelled for this study using FUSION 360 by Autodesk. The study of heat transfer between liquid water and the micro lattice structures realized with the independent variables, initial fluid flow velocity, lattice temperature, and fluid temperature as well as lattice materials and its different structures. About 2146 output data of average final fluid temperature and the pressure drop were collected from the CFD simulations by varying input parameters. To predict the output parameter against the set of input parameters, Machine Learning model with regression based classification algorithm was adopted while training the ML model. The quality metric of the ML model was calculated using residual sum of squares method. The final average temperature of the fluid and pressure drop as predicted by the ML model is closer to simulated data.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/850/1/012034</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Computational Fluid Dynamics ; Dataset ; Flow velocity ; Fluid flow ; Heat Transfer ; Independent variables ; Learning algorithms ; Machine Learning ; Micro lattice ; Parameters ; Pressure ; Pressure drop ; Regression models ; Simulation ; Water</subject><ispartof>IOP conference series. Earth and environmental science, 2021-11, Vol.850 (1), p.12034</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3224-a6c81bb338442ba8a7d30dc465b67efca62e127f277463d7fe239daf183508313</citedby><cites>FETCH-LOGICAL-c3224-a6c81bb338442ba8a7d30dc465b67efca62e127f277463d7fe239daf183508313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/850/1/012034/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Deb, Disha</creatorcontrib><creatorcontrib>Rajan, Harish</creatorcontrib><creatorcontrib>Kundu, Rajiv</creatorcontrib><creatorcontrib>Mohan, R</creatorcontrib><title>CFD and Machine Learning based Simulation of Flow and Heat Transfer Characteristics of Micro Lattice Structures</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>In this paper, systematic CFD analysis using ANSYS Fluent was carried out to generate the dataset for developing the Machine Learning model, which predicts the average final temperature of water and the pressure drop from the set of input parameters considered for applications. There are six micro lattice structures, kagome, tetrahedral, pyramidal, hexagonal, windward bent and hexagonal-windward bent, modelled for this study using FUSION 360 by Autodesk. The study of heat transfer between liquid water and the micro lattice structures realized with the independent variables, initial fluid flow velocity, lattice temperature, and fluid temperature as well as lattice materials and its different structures. About 2146 output data of average final fluid temperature and the pressure drop were collected from the CFD simulations by varying input parameters. To predict the output parameter against the set of input parameters, Machine Learning model with regression based classification algorithm was adopted while training the ML model. The quality metric of the ML model was calculated using residual sum of squares method. The final average temperature of the fluid and pressure drop as predicted by the ML model is closer to simulated data.</description><subject>Algorithms</subject><subject>Computational Fluid Dynamics</subject><subject>Dataset</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Heat Transfer</subject><subject>Independent variables</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Micro lattice</subject><subject>Parameters</subject><subject>Pressure</subject><subject>Pressure drop</subject><subject>Regression models</subject><subject>Simulation</subject><subject>Water</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkF1LwzAUhosoOKd_QQLeeFObrzbZpczNCRtebF6H0zRxGVtbkxbx39tamQiCVwnJ877n8ETRNcF3BEuZEJGmMWEkTWSKE5JgQjHjJ9Ho-HF6vGNxHl2EsMM4E5xNRlE1nT8gKAu0Ar11pUFLA7505SvKIZgCrd2h3UPjqhJVFs331fsXvTDQoI2HMljj0XQLHnRjvAuN06EnV077Ci2h6R4MWje-1U3rTbiMzizsg7n6PsfRy3y2mS7i5fPj0_R-GWtGKY8h05LkOWOSc5qDBFEwXGiepXkmjNWQUUOosFQInrFCWEPZpABLJEuxZISNo5uht_bVW2tCo3ZV68tupKLpREhOORcdlQ1Ut2wI3lhVe3cA_6EIVr1c1XtTvUPVyVVEDXK7IB2Crqp_mv8N3f4Rms3WvzBVF5Z9Ajsmh9I</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Deb, Disha</creator><creator>Rajan, Harish</creator><creator>Kundu, Rajiv</creator><creator>Mohan, R</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20211101</creationdate><title>CFD and Machine Learning based Simulation of Flow and Heat Transfer Characteristics of Micro Lattice Structures</title><author>Deb, Disha ; Rajan, Harish ; Kundu, Rajiv ; Mohan, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3224-a6c81bb338442ba8a7d30dc465b67efca62e127f277463d7fe239daf183508313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computational Fluid Dynamics</topic><topic>Dataset</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Heat Transfer</topic><topic>Independent variables</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Micro lattice</topic><topic>Parameters</topic><topic>Pressure</topic><topic>Pressure drop</topic><topic>Regression models</topic><topic>Simulation</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deb, Disha</creatorcontrib><creatorcontrib>Rajan, Harish</creatorcontrib><creatorcontrib>Kundu, Rajiv</creatorcontrib><creatorcontrib>Mohan, R</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deb, Disha</au><au>Rajan, Harish</au><au>Kundu, Rajiv</au><au>Mohan, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD and Machine Learning based Simulation of Flow and Heat Transfer Characteristics of Micro Lattice Structures</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>850</volume><issue>1</issue><spage>12034</spage><pages>12034-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>In this paper, systematic CFD analysis using ANSYS Fluent was carried out to generate the dataset for developing the Machine Learning model, which predicts the average final temperature of water and the pressure drop from the set of input parameters considered for applications. There are six micro lattice structures, kagome, tetrahedral, pyramidal, hexagonal, windward bent and hexagonal-windward bent, modelled for this study using FUSION 360 by Autodesk. The study of heat transfer between liquid water and the micro lattice structures realized with the independent variables, initial fluid flow velocity, lattice temperature, and fluid temperature as well as lattice materials and its different structures. About 2146 output data of average final fluid temperature and the pressure drop were collected from the CFD simulations by varying input parameters. To predict the output parameter against the set of input parameters, Machine Learning model with regression based classification algorithm was adopted while training the ML model. The quality metric of the ML model was calculated using residual sum of squares method. The final average temperature of the fluid and pressure drop as predicted by the ML model is closer to simulated data.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/850/1/012034</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2021-11, Vol.850 (1), p.12034
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2597842447
source Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Computational Fluid Dynamics
Dataset
Flow velocity
Fluid flow
Heat Transfer
Independent variables
Learning algorithms
Machine Learning
Micro lattice
Parameters
Pressure
Pressure drop
Regression models
Simulation
Water
title CFD and Machine Learning based Simulation of Flow and Heat Transfer Characteristics of Micro Lattice Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20and%20Machine%20Learning%20based%20Simulation%20of%20Flow%20and%20Heat%20Transfer%20Characteristics%20of%20Micro%20Lattice%20Structures&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Deb,%20Disha&rft.date=2021-11-01&rft.volume=850&rft.issue=1&rft.spage=12034&rft.pages=12034-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/850/1/012034&rft_dat=%3Cproquest_iop_j%3E2597842447%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597842447&rft_id=info:pmid/&rfr_iscdi=true