Defect Configurations and Ionization Energies of Carbon Vacancies, Hydrogen, Boron and Their Complexes in Diamond
We present first principles density functional theory calculations of boron, hydrogen, interstitial carbon atoms and their complexes in diamond. Such complexes are expected to form in boron-implanted diamond samples, where the hydrogen is present as a remnant of the diamond growth process. The groun...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2021-12, Vol.50 (12), p.6888-6896 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6896 |
---|---|
container_issue | 12 |
container_start_page | 6888 |
container_title | Journal of electronic materials |
container_volume | 50 |
creator | Tandon, Nandan Grotjohn, Timothy A. Albrecht, John D. |
description | We present first principles density functional theory calculations of boron, hydrogen, interstitial carbon atoms and their complexes in diamond. Such complexes are expected to form in boron-implanted diamond samples, where the hydrogen is present as a remnant of the diamond growth process. The ground state configurations of these defects are evaluated and the corresponding ionization energies are estimated using the marker method. We present comparisons with literature wherever available. Earlier work in this area has primarily explored the ground state configurations and defect energies by considering the system as a spin-degenerate state. Here, both the spin-degenerate as well as the spin-polarized calculations are performed to identify the minimum energy configuration and explore local magnetic moments on atomic sites. A few saddle point structures are also discovered in the relaxation process at intermediate energies and correspond to previously unreported defect configurations. In the future, these ground state configurations of the defect complexes can provide the relevant energies for investigating the diffusion of defects in diamond. |
doi_str_mv | 10.1007/s11664-021-09217-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2597613324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597613324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3049c2fb53ff6747fe0cbd36654d7e70920e2aec78c2bcb47cf2d0786333a7883</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAa6P5s5vsHrWttlDwUsVbyGaTdUubtMkWrJ_etCt48zTMzPu9YR4AtwTfE4zFQySE8wxhShAuKRGoOAMDkmcMkYJ_nIMBZpygnLL8ElzFuMKY5KQgA7CbGGt0B8fe2bbZB9W13kWoXA3n3rXfpx5OnQlNayL0Fo5VqNLoXWnldJqN4OxQB98YN4JPPqTVEV5-mjYk1812bb4S2Do4adXGu_oaXFi1jubmtw7B2_N0OZ6hxevLfPy4QJqRskMMZ6WmtsqZtVxkwhqsq5pxnme1MCJ9iQ1VRotC00pXmdCW1lgUnDGmRFGwIbjrfbfB7_YmdnLl98Glk5LmpeCEMZolFe1VOvgYg7FyG9qNCgdJsDxGK_toZYpWnqKVR2vWQzGJXWPCn_U_1A9mVXxh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597613324</pqid></control><display><type>article</type><title>Defect Configurations and Ionization Energies of Carbon Vacancies, Hydrogen, Boron and Their Complexes in Diamond</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tandon, Nandan ; Grotjohn, Timothy A. ; Albrecht, John D.</creator><creatorcontrib>Tandon, Nandan ; Grotjohn, Timothy A. ; Albrecht, John D.</creatorcontrib><description>We present first principles density functional theory calculations of boron, hydrogen, interstitial carbon atoms and their complexes in diamond. Such complexes are expected to form in boron-implanted diamond samples, where the hydrogen is present as a remnant of the diamond growth process. The ground state configurations of these defects are evaluated and the corresponding ionization energies are estimated using the marker method. We present comparisons with literature wherever available. Earlier work in this area has primarily explored the ground state configurations and defect energies by considering the system as a spin-degenerate state. Here, both the spin-degenerate as well as the spin-polarized calculations are performed to identify the minimum energy configuration and explore local magnetic moments on atomic sites. A few saddle point structures are also discovered in the relaxation process at intermediate energies and correspond to previously unreported defect configurations. In the future, these ground state configurations of the defect complexes can provide the relevant energies for investigating the diffusion of defects in diamond.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-021-09217-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boron ; Carbon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Configurations ; Defects ; Density functional theory ; Diamonds ; Electronics and Microelectronics ; First principles ; Ground state ; Hydrogen ; Instrumentation ; Ionization ; Magnetic moments ; Materials Science ; Mathematical analysis ; Optical and Electronic Materials ; Original Research Article ; Saddle points ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2021-12, Vol.50 (12), p.6888-6896</ispartof><rights>The Minerals, Metals & Materials Society 2021</rights><rights>The Minerals, Metals & Materials Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3049c2fb53ff6747fe0cbd36654d7e70920e2aec78c2bcb47cf2d0786333a7883</citedby><cites>FETCH-LOGICAL-c319t-3049c2fb53ff6747fe0cbd36654d7e70920e2aec78c2bcb47cf2d0786333a7883</cites><orcidid>0000-0003-1698-027X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-021-09217-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-021-09217-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tandon, Nandan</creatorcontrib><creatorcontrib>Grotjohn, Timothy A.</creatorcontrib><creatorcontrib>Albrecht, John D.</creatorcontrib><title>Defect Configurations and Ionization Energies of Carbon Vacancies, Hydrogen, Boron and Their Complexes in Diamond</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>We present first principles density functional theory calculations of boron, hydrogen, interstitial carbon atoms and their complexes in diamond. Such complexes are expected to form in boron-implanted diamond samples, where the hydrogen is present as a remnant of the diamond growth process. The ground state configurations of these defects are evaluated and the corresponding ionization energies are estimated using the marker method. We present comparisons with literature wherever available. Earlier work in this area has primarily explored the ground state configurations and defect energies by considering the system as a spin-degenerate state. Here, both the spin-degenerate as well as the spin-polarized calculations are performed to identify the minimum energy configuration and explore local magnetic moments on atomic sites. A few saddle point structures are also discovered in the relaxation process at intermediate energies and correspond to previously unreported defect configurations. In the future, these ground state configurations of the defect complexes can provide the relevant energies for investigating the diffusion of defects in diamond.</description><subject>Boron</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Configurations</subject><subject>Defects</subject><subject>Density functional theory</subject><subject>Diamonds</subject><subject>Electronics and Microelectronics</subject><subject>First principles</subject><subject>Ground state</subject><subject>Hydrogen</subject><subject>Instrumentation</subject><subject>Ionization</subject><subject>Magnetic moments</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Saddle points</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAa6P5s5vsHrWttlDwUsVbyGaTdUubtMkWrJ_etCt48zTMzPu9YR4AtwTfE4zFQySE8wxhShAuKRGoOAMDkmcMkYJ_nIMBZpygnLL8ElzFuMKY5KQgA7CbGGt0B8fe2bbZB9W13kWoXA3n3rXfpx5OnQlNayL0Fo5VqNLoXWnldJqN4OxQB98YN4JPPqTVEV5-mjYk1812bb4S2Do4adXGu_oaXFi1jubmtw7B2_N0OZ6hxevLfPy4QJqRskMMZ6WmtsqZtVxkwhqsq5pxnme1MCJ9iQ1VRotC00pXmdCW1lgUnDGmRFGwIbjrfbfB7_YmdnLl98Glk5LmpeCEMZolFe1VOvgYg7FyG9qNCgdJsDxGK_toZYpWnqKVR2vWQzGJXWPCn_U_1A9mVXxh</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Tandon, Nandan</creator><creator>Grotjohn, Timothy A.</creator><creator>Albrecht, John D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-1698-027X</orcidid></search><sort><creationdate>20211201</creationdate><title>Defect Configurations and Ionization Energies of Carbon Vacancies, Hydrogen, Boron and Their Complexes in Diamond</title><author>Tandon, Nandan ; Grotjohn, Timothy A. ; Albrecht, John D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3049c2fb53ff6747fe0cbd36654d7e70920e2aec78c2bcb47cf2d0786333a7883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boron</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Configurations</topic><topic>Defects</topic><topic>Density functional theory</topic><topic>Diamonds</topic><topic>Electronics and Microelectronics</topic><topic>First principles</topic><topic>Ground state</topic><topic>Hydrogen</topic><topic>Instrumentation</topic><topic>Ionization</topic><topic>Magnetic moments</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Saddle points</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tandon, Nandan</creatorcontrib><creatorcontrib>Grotjohn, Timothy A.</creatorcontrib><creatorcontrib>Albrecht, John D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tandon, Nandan</au><au>Grotjohn, Timothy A.</au><au>Albrecht, John D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect Configurations and Ionization Energies of Carbon Vacancies, Hydrogen, Boron and Their Complexes in Diamond</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>50</volume><issue>12</issue><spage>6888</spage><epage>6896</epage><pages>6888-6896</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>We present first principles density functional theory calculations of boron, hydrogen, interstitial carbon atoms and their complexes in diamond. Such complexes are expected to form in boron-implanted diamond samples, where the hydrogen is present as a remnant of the diamond growth process. The ground state configurations of these defects are evaluated and the corresponding ionization energies are estimated using the marker method. We present comparisons with literature wherever available. Earlier work in this area has primarily explored the ground state configurations and defect energies by considering the system as a spin-degenerate state. Here, both the spin-degenerate as well as the spin-polarized calculations are performed to identify the minimum energy configuration and explore local magnetic moments on atomic sites. A few saddle point structures are also discovered in the relaxation process at intermediate energies and correspond to previously unreported defect configurations. In the future, these ground state configurations of the defect complexes can provide the relevant energies for investigating the diffusion of defects in diamond.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-021-09217-8</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1698-027X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2021-12, Vol.50 (12), p.6888-6896 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2597613324 |
source | SpringerLink Journals - AutoHoldings |
subjects | Boron Carbon Characterization and Evaluation of Materials Chemistry and Materials Science Configurations Defects Density functional theory Diamonds Electronics and Microelectronics First principles Ground state Hydrogen Instrumentation Ionization Magnetic moments Materials Science Mathematical analysis Optical and Electronic Materials Original Research Article Saddle points Solid State Physics |
title | Defect Configurations and Ionization Energies of Carbon Vacancies, Hydrogen, Boron and Their Complexes in Diamond |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20Configurations%20and%20Ionization%20Energies%20of%20Carbon%20Vacancies,%20Hydrogen,%20Boron%20and%20Their%20Complexes%20in%20Diamond&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Tandon,%20Nandan&rft.date=2021-12-01&rft.volume=50&rft.issue=12&rft.spage=6888&rft.epage=6896&rft.pages=6888-6896&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-021-09217-8&rft_dat=%3Cproquest_cross%3E2597613324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597613324&rft_id=info:pmid/&rfr_iscdi=true |