Defect Configurations and Ionization Energies of Carbon Vacancies, Hydrogen, Boron and Their Complexes in Diamond

We present first principles density functional theory calculations of boron, hydrogen, interstitial carbon atoms and their complexes in diamond. Such complexes are expected to form in boron-implanted diamond samples, where the hydrogen is present as a remnant of the diamond growth process. The groun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2021-12, Vol.50 (12), p.6888-6896
Hauptverfasser: Tandon, Nandan, Grotjohn, Timothy A., Albrecht, John D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6896
container_issue 12
container_start_page 6888
container_title Journal of electronic materials
container_volume 50
creator Tandon, Nandan
Grotjohn, Timothy A.
Albrecht, John D.
description We present first principles density functional theory calculations of boron, hydrogen, interstitial carbon atoms and their complexes in diamond. Such complexes are expected to form in boron-implanted diamond samples, where the hydrogen is present as a remnant of the diamond growth process. The ground state configurations of these defects are evaluated and the corresponding ionization energies are estimated using the marker method. We present comparisons with literature wherever available. Earlier work in this area has primarily explored the ground state configurations and defect energies by considering the system as a spin-degenerate state. Here, both the spin-degenerate as well as the spin-polarized calculations are performed to identify the minimum energy configuration and explore local magnetic moments on atomic sites. A few saddle point structures are also discovered in the relaxation process at intermediate energies and correspond to previously unreported defect configurations. In the future, these ground state configurations of the defect complexes can provide the relevant energies for investigating the diffusion of defects in diamond.
doi_str_mv 10.1007/s11664-021-09217-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2597613324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597613324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3049c2fb53ff6747fe0cbd36654d7e70920e2aec78c2bcb47cf2d0786333a7883</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAa6P5s5vsHrWttlDwUsVbyGaTdUubtMkWrJ_etCt48zTMzPu9YR4AtwTfE4zFQySE8wxhShAuKRGoOAMDkmcMkYJ_nIMBZpygnLL8ElzFuMKY5KQgA7CbGGt0B8fe2bbZB9W13kWoXA3n3rXfpx5OnQlNayL0Fo5VqNLoXWnldJqN4OxQB98YN4JPPqTVEV5-mjYk1812bb4S2Do4adXGu_oaXFi1jubmtw7B2_N0OZ6hxevLfPy4QJqRskMMZ6WmtsqZtVxkwhqsq5pxnme1MCJ9iQ1VRotC00pXmdCW1lgUnDGmRFGwIbjrfbfB7_YmdnLl98Glk5LmpeCEMZolFe1VOvgYg7FyG9qNCgdJsDxGK_toZYpWnqKVR2vWQzGJXWPCn_U_1A9mVXxh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597613324</pqid></control><display><type>article</type><title>Defect Configurations and Ionization Energies of Carbon Vacancies, Hydrogen, Boron and Their Complexes in Diamond</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tandon, Nandan ; Grotjohn, Timothy A. ; Albrecht, John D.</creator><creatorcontrib>Tandon, Nandan ; Grotjohn, Timothy A. ; Albrecht, John D.</creatorcontrib><description>We present first principles density functional theory calculations of boron, hydrogen, interstitial carbon atoms and their complexes in diamond. Such complexes are expected to form in boron-implanted diamond samples, where the hydrogen is present as a remnant of the diamond growth process. The ground state configurations of these defects are evaluated and the corresponding ionization energies are estimated using the marker method. We present comparisons with literature wherever available. Earlier work in this area has primarily explored the ground state configurations and defect energies by considering the system as a spin-degenerate state. Here, both the spin-degenerate as well as the spin-polarized calculations are performed to identify the minimum energy configuration and explore local magnetic moments on atomic sites. A few saddle point structures are also discovered in the relaxation process at intermediate energies and correspond to previously unreported defect configurations. In the future, these ground state configurations of the defect complexes can provide the relevant energies for investigating the diffusion of defects in diamond.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-021-09217-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boron ; Carbon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Configurations ; Defects ; Density functional theory ; Diamonds ; Electronics and Microelectronics ; First principles ; Ground state ; Hydrogen ; Instrumentation ; Ionization ; Magnetic moments ; Materials Science ; Mathematical analysis ; Optical and Electronic Materials ; Original Research Article ; Saddle points ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2021-12, Vol.50 (12), p.6888-6896</ispartof><rights>The Minerals, Metals &amp; Materials Society 2021</rights><rights>The Minerals, Metals &amp; Materials Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3049c2fb53ff6747fe0cbd36654d7e70920e2aec78c2bcb47cf2d0786333a7883</citedby><cites>FETCH-LOGICAL-c319t-3049c2fb53ff6747fe0cbd36654d7e70920e2aec78c2bcb47cf2d0786333a7883</cites><orcidid>0000-0003-1698-027X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-021-09217-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-021-09217-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tandon, Nandan</creatorcontrib><creatorcontrib>Grotjohn, Timothy A.</creatorcontrib><creatorcontrib>Albrecht, John D.</creatorcontrib><title>Defect Configurations and Ionization Energies of Carbon Vacancies, Hydrogen, Boron and Their Complexes in Diamond</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>We present first principles density functional theory calculations of boron, hydrogen, interstitial carbon atoms and their complexes in diamond. Such complexes are expected to form in boron-implanted diamond samples, where the hydrogen is present as a remnant of the diamond growth process. The ground state configurations of these defects are evaluated and the corresponding ionization energies are estimated using the marker method. We present comparisons with literature wherever available. Earlier work in this area has primarily explored the ground state configurations and defect energies by considering the system as a spin-degenerate state. Here, both the spin-degenerate as well as the spin-polarized calculations are performed to identify the minimum energy configuration and explore local magnetic moments on atomic sites. A few saddle point structures are also discovered in the relaxation process at intermediate energies and correspond to previously unreported defect configurations. In the future, these ground state configurations of the defect complexes can provide the relevant energies for investigating the diffusion of defects in diamond.</description><subject>Boron</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Configurations</subject><subject>Defects</subject><subject>Density functional theory</subject><subject>Diamonds</subject><subject>Electronics and Microelectronics</subject><subject>First principles</subject><subject>Ground state</subject><subject>Hydrogen</subject><subject>Instrumentation</subject><subject>Ionization</subject><subject>Magnetic moments</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Saddle points</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAa6P5s5vsHrWttlDwUsVbyGaTdUubtMkWrJ_etCt48zTMzPu9YR4AtwTfE4zFQySE8wxhShAuKRGoOAMDkmcMkYJ_nIMBZpygnLL8ElzFuMKY5KQgA7CbGGt0B8fe2bbZB9W13kWoXA3n3rXfpx5OnQlNayL0Fo5VqNLoXWnldJqN4OxQB98YN4JPPqTVEV5-mjYk1812bb4S2Do4adXGu_oaXFi1jubmtw7B2_N0OZ6hxevLfPy4QJqRskMMZ6WmtsqZtVxkwhqsq5pxnme1MCJ9iQ1VRotC00pXmdCW1lgUnDGmRFGwIbjrfbfB7_YmdnLl98Glk5LmpeCEMZolFe1VOvgYg7FyG9qNCgdJsDxGK_toZYpWnqKVR2vWQzGJXWPCn_U_1A9mVXxh</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Tandon, Nandan</creator><creator>Grotjohn, Timothy A.</creator><creator>Albrecht, John D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-1698-027X</orcidid></search><sort><creationdate>20211201</creationdate><title>Defect Configurations and Ionization Energies of Carbon Vacancies, Hydrogen, Boron and Their Complexes in Diamond</title><author>Tandon, Nandan ; Grotjohn, Timothy A. ; Albrecht, John D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3049c2fb53ff6747fe0cbd36654d7e70920e2aec78c2bcb47cf2d0786333a7883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boron</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Configurations</topic><topic>Defects</topic><topic>Density functional theory</topic><topic>Diamonds</topic><topic>Electronics and Microelectronics</topic><topic>First principles</topic><topic>Ground state</topic><topic>Hydrogen</topic><topic>Instrumentation</topic><topic>Ionization</topic><topic>Magnetic moments</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Saddle points</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tandon, Nandan</creatorcontrib><creatorcontrib>Grotjohn, Timothy A.</creatorcontrib><creatorcontrib>Albrecht, John D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tandon, Nandan</au><au>Grotjohn, Timothy A.</au><au>Albrecht, John D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect Configurations and Ionization Energies of Carbon Vacancies, Hydrogen, Boron and Their Complexes in Diamond</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>50</volume><issue>12</issue><spage>6888</spage><epage>6896</epage><pages>6888-6896</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>We present first principles density functional theory calculations of boron, hydrogen, interstitial carbon atoms and their complexes in diamond. Such complexes are expected to form in boron-implanted diamond samples, where the hydrogen is present as a remnant of the diamond growth process. The ground state configurations of these defects are evaluated and the corresponding ionization energies are estimated using the marker method. We present comparisons with literature wherever available. Earlier work in this area has primarily explored the ground state configurations and defect energies by considering the system as a spin-degenerate state. Here, both the spin-degenerate as well as the spin-polarized calculations are performed to identify the minimum energy configuration and explore local magnetic moments on atomic sites. A few saddle point structures are also discovered in the relaxation process at intermediate energies and correspond to previously unreported defect configurations. In the future, these ground state configurations of the defect complexes can provide the relevant energies for investigating the diffusion of defects in diamond.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-021-09217-8</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1698-027X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2021-12, Vol.50 (12), p.6888-6896
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2597613324
source SpringerLink Journals - AutoHoldings
subjects Boron
Carbon
Characterization and Evaluation of Materials
Chemistry and Materials Science
Configurations
Defects
Density functional theory
Diamonds
Electronics and Microelectronics
First principles
Ground state
Hydrogen
Instrumentation
Ionization
Magnetic moments
Materials Science
Mathematical analysis
Optical and Electronic Materials
Original Research Article
Saddle points
Solid State Physics
title Defect Configurations and Ionization Energies of Carbon Vacancies, Hydrogen, Boron and Their Complexes in Diamond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20Configurations%20and%20Ionization%20Energies%20of%20Carbon%20Vacancies,%20Hydrogen,%20Boron%20and%20Their%20Complexes%20in%20Diamond&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Tandon,%20Nandan&rft.date=2021-12-01&rft.volume=50&rft.issue=12&rft.spage=6888&rft.epage=6896&rft.pages=6888-6896&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-021-09217-8&rft_dat=%3Cproquest_cross%3E2597613324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597613324&rft_id=info:pmid/&rfr_iscdi=true