Engineering Cu2ZnSnS4 grain boundaries for enhanced photovoltage generation at the Cu2ZnSnS4/TiO2 heterojunction: A nanoscale investigation using Kelvin probe force microscopy

Over the past several years, kesterite Cu2ZnSnS4 (CZTS) absorber has been investigated comprehensively; however, the performance is still hampered by a large open-circuit voltage deficit associated with CZTS bulk defects and interface recombination. To overcome this trend, we report a facile approac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2021-11, Vol.130 (13)
Hauptverfasser: Nisika, Ghosh Anupam, Kaur Kulwinder, Bobba, Raja Sekhar, Quinn, Qiao, Kumar, Mukesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page
container_title Journal of applied physics
container_volume 130
creator Nisika
Ghosh Anupam
Kaur Kulwinder
Bobba, Raja Sekhar
Quinn, Qiao
Kumar, Mukesh
description Over the past several years, kesterite Cu2ZnSnS4 (CZTS) absorber has been investigated comprehensively; however, the performance is still hampered by a large open-circuit voltage deficit associated with CZTS bulk defects and interface recombination. To overcome this trend, we report a facile approach to passivate both defect prone areas, i.e., bulk of CZTS and CZTS interface with a TiO2 buffer layer, simultaneously. The existence of oxygen ambient during TiO2 deposition has modulated the electrical properties of CZTS grain boundaries (GBs) not only inside the bulk but also at the surface of CZTS. The passivation of surface GBs is favorable for CZTS/TiO2 heterojunction electronic properties, whereas passivated bulk GBs improve the carrier transport inside the CZTS absorber. To directly probe the photovoltage generation at the CZTS/TiO2 heterojunction, Kelvin probe force microscopy is conducted in surface and junction modes. The acquired photovoltage map exhibits higher values at the GBs, which reveals an increment in downward band bending after oxygen diffusion inside the bulk of CZTS. In point of fact, the enhanced diffusion of oxygen accounts for the suppression of carrier recombination and reduction in dark current. Finally, current–voltage and capacitance–voltage measurements performed on the CZTS/TiO2 heterojunction further validate our outcomes. Our findings provide critical insight into the engineering of CZTS GBs to control electronic properties of CZTS and CZTS/TiO2 heterojunctions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2597591140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597591140</sourcerecordid><originalsourceid>FETCH-proquest_journals_25975911403</originalsourceid><addsrcrecordid>eNqNjs1Kw0AUhQexYLS-wwXXwZm0IRl3UiqCCxftyk2ZpreTCfHeOD8Bn8pXNEHBrauzON_5uRCZkrXOq7KUlyKTslB5rSt9Ja5D6KRUql7pTHxtyTpC9I4sbFLxRjvarcF64wiOnOhkvMMAZ_aA1Bpq8ARDy5FH7qOxCBYJvYmOCUyE2OJfzf3evRbQYkTPXaJmhh7gEcgQh8b0CI5GDNHZn3wK84sX7MdpfPB8xHm3QXh3jZ8SPHwuxeJs-oC3v3oj7p62-81zPuEfaeo6dJw8TdahKHVVaqXWcvU_6htgVWO9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597591140</pqid></control><display><type>article</type><title>Engineering Cu2ZnSnS4 grain boundaries for enhanced photovoltage generation at the Cu2ZnSnS4/TiO2 heterojunction: A nanoscale investigation using Kelvin probe force microscopy</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Nisika ; Ghosh Anupam ; Kaur Kulwinder ; Bobba, Raja Sekhar ; Quinn, Qiao ; Kumar, Mukesh</creator><creatorcontrib>Nisika ; Ghosh Anupam ; Kaur Kulwinder ; Bobba, Raja Sekhar ; Quinn, Qiao ; Kumar, Mukesh</creatorcontrib><description>Over the past several years, kesterite Cu2ZnSnS4 (CZTS) absorber has been investigated comprehensively; however, the performance is still hampered by a large open-circuit voltage deficit associated with CZTS bulk defects and interface recombination. To overcome this trend, we report a facile approach to passivate both defect prone areas, i.e., bulk of CZTS and CZTS interface with a TiO2 buffer layer, simultaneously. The existence of oxygen ambient during TiO2 deposition has modulated the electrical properties of CZTS grain boundaries (GBs) not only inside the bulk but also at the surface of CZTS. The passivation of surface GBs is favorable for CZTS/TiO2 heterojunction electronic properties, whereas passivated bulk GBs improve the carrier transport inside the CZTS absorber. To directly probe the photovoltage generation at the CZTS/TiO2 heterojunction, Kelvin probe force microscopy is conducted in surface and junction modes. The acquired photovoltage map exhibits higher values at the GBs, which reveals an increment in downward band bending after oxygen diffusion inside the bulk of CZTS. In point of fact, the enhanced diffusion of oxygen accounts for the suppression of carrier recombination and reduction in dark current. Finally, current–voltage and capacitance–voltage measurements performed on the CZTS/TiO2 heterojunction further validate our outcomes. Our findings provide critical insight into the engineering of CZTS GBs to control electronic properties of CZTS and CZTS/TiO2 heterojunctions.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorbers ; Applied physics ; Buffer layers ; Carrier recombination ; Carrier transport ; Crystal defects ; Dark current ; Electrical measurement ; Electrical properties ; Electronic properties ; Enhanced diffusion ; Grain boundaries ; Heterojunctions ; Microscopy ; Open circuit voltage ; Oxygen ; Titanium dioxide</subject><ispartof>Journal of applied physics, 2021-11, Vol.130 (13)</ispartof><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781</link.rule.ids></links><search><creatorcontrib>Nisika</creatorcontrib><creatorcontrib>Ghosh Anupam</creatorcontrib><creatorcontrib>Kaur Kulwinder</creatorcontrib><creatorcontrib>Bobba, Raja Sekhar</creatorcontrib><creatorcontrib>Quinn, Qiao</creatorcontrib><creatorcontrib>Kumar, Mukesh</creatorcontrib><title>Engineering Cu2ZnSnS4 grain boundaries for enhanced photovoltage generation at the Cu2ZnSnS4/TiO2 heterojunction: A nanoscale investigation using Kelvin probe force microscopy</title><title>Journal of applied physics</title><description>Over the past several years, kesterite Cu2ZnSnS4 (CZTS) absorber has been investigated comprehensively; however, the performance is still hampered by a large open-circuit voltage deficit associated with CZTS bulk defects and interface recombination. To overcome this trend, we report a facile approach to passivate both defect prone areas, i.e., bulk of CZTS and CZTS interface with a TiO2 buffer layer, simultaneously. The existence of oxygen ambient during TiO2 deposition has modulated the electrical properties of CZTS grain boundaries (GBs) not only inside the bulk but also at the surface of CZTS. The passivation of surface GBs is favorable for CZTS/TiO2 heterojunction electronic properties, whereas passivated bulk GBs improve the carrier transport inside the CZTS absorber. To directly probe the photovoltage generation at the CZTS/TiO2 heterojunction, Kelvin probe force microscopy is conducted in surface and junction modes. The acquired photovoltage map exhibits higher values at the GBs, which reveals an increment in downward band bending after oxygen diffusion inside the bulk of CZTS. In point of fact, the enhanced diffusion of oxygen accounts for the suppression of carrier recombination and reduction in dark current. Finally, current–voltage and capacitance–voltage measurements performed on the CZTS/TiO2 heterojunction further validate our outcomes. Our findings provide critical insight into the engineering of CZTS GBs to control electronic properties of CZTS and CZTS/TiO2 heterojunctions.</description><subject>Absorbers</subject><subject>Applied physics</subject><subject>Buffer layers</subject><subject>Carrier recombination</subject><subject>Carrier transport</subject><subject>Crystal defects</subject><subject>Dark current</subject><subject>Electrical measurement</subject><subject>Electrical properties</subject><subject>Electronic properties</subject><subject>Enhanced diffusion</subject><subject>Grain boundaries</subject><subject>Heterojunctions</subject><subject>Microscopy</subject><subject>Open circuit voltage</subject><subject>Oxygen</subject><subject>Titanium dioxide</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjs1Kw0AUhQexYLS-wwXXwZm0IRl3UiqCCxftyk2ZpreTCfHeOD8Bn8pXNEHBrauzON_5uRCZkrXOq7KUlyKTslB5rSt9Ja5D6KRUql7pTHxtyTpC9I4sbFLxRjvarcF64wiOnOhkvMMAZ_aA1Bpq8ARDy5FH7qOxCBYJvYmOCUyE2OJfzf3evRbQYkTPXaJmhh7gEcgQh8b0CI5GDNHZn3wK84sX7MdpfPB8xHm3QXh3jZ8SPHwuxeJs-oC3v3oj7p62-81zPuEfaeo6dJw8TdahKHVVaqXWcvU_6htgVWO9</recordid><startdate>20211121</startdate><enddate>20211121</enddate><creator>Nisika</creator><creator>Ghosh Anupam</creator><creator>Kaur Kulwinder</creator><creator>Bobba, Raja Sekhar</creator><creator>Quinn, Qiao</creator><creator>Kumar, Mukesh</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20211121</creationdate><title>Engineering Cu2ZnSnS4 grain boundaries for enhanced photovoltage generation at the Cu2ZnSnS4/TiO2 heterojunction: A nanoscale investigation using Kelvin probe force microscopy</title><author>Nisika ; Ghosh Anupam ; Kaur Kulwinder ; Bobba, Raja Sekhar ; Quinn, Qiao ; Kumar, Mukesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25975911403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorbers</topic><topic>Applied physics</topic><topic>Buffer layers</topic><topic>Carrier recombination</topic><topic>Carrier transport</topic><topic>Crystal defects</topic><topic>Dark current</topic><topic>Electrical measurement</topic><topic>Electrical properties</topic><topic>Electronic properties</topic><topic>Enhanced diffusion</topic><topic>Grain boundaries</topic><topic>Heterojunctions</topic><topic>Microscopy</topic><topic>Open circuit voltage</topic><topic>Oxygen</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nisika</creatorcontrib><creatorcontrib>Ghosh Anupam</creatorcontrib><creatorcontrib>Kaur Kulwinder</creatorcontrib><creatorcontrib>Bobba, Raja Sekhar</creatorcontrib><creatorcontrib>Quinn, Qiao</creatorcontrib><creatorcontrib>Kumar, Mukesh</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nisika</au><au>Ghosh Anupam</au><au>Kaur Kulwinder</au><au>Bobba, Raja Sekhar</au><au>Quinn, Qiao</au><au>Kumar, Mukesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Cu2ZnSnS4 grain boundaries for enhanced photovoltage generation at the Cu2ZnSnS4/TiO2 heterojunction: A nanoscale investigation using Kelvin probe force microscopy</atitle><jtitle>Journal of applied physics</jtitle><date>2021-11-21</date><risdate>2021</risdate><volume>130</volume><issue>13</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Over the past several years, kesterite Cu2ZnSnS4 (CZTS) absorber has been investigated comprehensively; however, the performance is still hampered by a large open-circuit voltage deficit associated with CZTS bulk defects and interface recombination. To overcome this trend, we report a facile approach to passivate both defect prone areas, i.e., bulk of CZTS and CZTS interface with a TiO2 buffer layer, simultaneously. The existence of oxygen ambient during TiO2 deposition has modulated the electrical properties of CZTS grain boundaries (GBs) not only inside the bulk but also at the surface of CZTS. The passivation of surface GBs is favorable for CZTS/TiO2 heterojunction electronic properties, whereas passivated bulk GBs improve the carrier transport inside the CZTS absorber. To directly probe the photovoltage generation at the CZTS/TiO2 heterojunction, Kelvin probe force microscopy is conducted in surface and junction modes. The acquired photovoltage map exhibits higher values at the GBs, which reveals an increment in downward band bending after oxygen diffusion inside the bulk of CZTS. In point of fact, the enhanced diffusion of oxygen accounts for the suppression of carrier recombination and reduction in dark current. Finally, current–voltage and capacitance–voltage measurements performed on the CZTS/TiO2 heterojunction further validate our outcomes. Our findings provide critical insight into the engineering of CZTS GBs to control electronic properties of CZTS and CZTS/TiO2 heterojunctions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2021-11, Vol.130 (13)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2597591140
source AIP Journals Complete; Alma/SFX Local Collection
subjects Absorbers
Applied physics
Buffer layers
Carrier recombination
Carrier transport
Crystal defects
Dark current
Electrical measurement
Electrical properties
Electronic properties
Enhanced diffusion
Grain boundaries
Heterojunctions
Microscopy
Open circuit voltage
Oxygen
Titanium dioxide
title Engineering Cu2ZnSnS4 grain boundaries for enhanced photovoltage generation at the Cu2ZnSnS4/TiO2 heterojunction: A nanoscale investigation using Kelvin probe force microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Cu2ZnSnS4%20grain%20boundaries%20for%20enhanced%20photovoltage%20generation%20at%20the%20Cu2ZnSnS4/TiO2%20heterojunction:%20A%20nanoscale%20investigation%20using%20Kelvin%20probe%20force%20microscopy&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Nisika&rft.date=2021-11-21&rft.volume=130&rft.issue=13&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/&rft_dat=%3Cproquest%3E2597591140%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597591140&rft_id=info:pmid/&rfr_iscdi=true