Dielectric, ferroelectric, magnetic and multiferroic properties of xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics

Multiferroic composite ceramics x Ni 0.15 Cu 0.25 Zn 0.6 Fe 2 O 4 -(1- x ) Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3 ( x  = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.9 and 1) were prepared by combining chemical co-precipitation method with sol–gel method; the microstructure, dielectric, ferroelectric, magnetic and mult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2021, Vol.127 (12), Article 915
Hauptverfasser: Li, Wenchuan, Wu, Heng, Ao, Hong, Zeng, Zhixin, Gao, Rongli, Cai, Wei, Fu, Chunlin, Deng, Xiaoling, Chen, Gang, Wang, Zhenhua, Lei, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 127
creator Li, Wenchuan
Wu, Heng
Ao, Hong
Zeng, Zhixin
Gao, Rongli
Cai, Wei
Fu, Chunlin
Deng, Xiaoling
Chen, Gang
Wang, Zhenhua
Lei, Xiang
description Multiferroic composite ceramics x Ni 0.15 Cu 0.25 Zn 0.6 Fe 2 O 4 -(1- x ) Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3 ( x  = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.9 and 1) were prepared by combining chemical co-precipitation method with sol–gel method; the microstructure, dielectric, ferroelectric, magnetic and multiferroic properties were comparatively investigated. XRD results show that all the specimens have obvious bi-phases structure. The grains with larger size are magnetic phase Ni 0.15 Cu 0.25 Zn 0.6 Fe 2 O 4 (NCZF), while that of smaller size can be attributed to ferroelectric phase Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3 (BCZT). The dielectric constant of the sample with x  = 0.6 is the largest at low frequency but the specimen x  = 0.2 has the highest value of dielectric constant in high-frequency region. When x  = 0.9, the ceramic has the largest loss, while it presents the lowest loss value when x  = 0.3. The height of the peak decreases with increase in the frequency, and the position of the peak moves to higher temperature range with the decrease in x . The dielectric loss increases sharply with temperature, especially when x  = 0.9, when the temperature is higher than 300 °C, the dielectric loss reaches hundreds of times under low frequency. Al samples present apparent ferroelectric hysteresis loops, but further characterization shows that the hysteresis may be attributed to leakage current. The remnant polarization( P r ) and coercive field( E c ) do not monotonically change with x , P r is 0.1576 μC/cm 2 at 2 kHz when x  = 0.6. The magnetization monotonically changes with the x , indicating that there is a strong interfacial interaction between the two phases. Under the action of an external magnetic field of 1 mT, the magnetoelectric (ME) coupling is the strongest (relative polarization change 37%) when x  = 0.2.
doi_str_mv 10.1007/s00339-021-05060-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2597508390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597508390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1640-92931d7966acc153fc0a8a952be7ddfb84e103ddcdc8b4ac8475c3e2ccfe617b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKcFLwqmTpLN7uao9RPEXuqll5DOzkqku1uTLehv8E-bWsGbc8iQ8LyT5GHsRMBYAJSXEUApw0EKDhoK4LDDRiJXkkOhYJeNwOQlr5Qp9tlBjG-QKpdyxL5uPC0Jh-DxImsohP5v27rXjgaPmevqrF0vB_8DpINV6FcUBk8x65vs49mnZ-jJGsZSzzsYF3ckpzk_E_zj_NrBuNITtyHmIa2zBJupyrBvV330A2VIwbUe4xHba9wy0vFvP2Qvd7ezyQN_mt4_Tq6eOIoiB26kUaIuTVE4RKFVg-AqZ7RcUFnXzaLKSYCqa6yxWuQOq7zUqEgiNlSIcqEO2el2bvrG-5riYN_6dejSlVZqU2pIniBRckth6GMM1NhV8K0Ln1aA3Ui3W-k2Sbc_0u0mpLahmODulcLf6H9S38czggA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597508390</pqid></control><display><type>article</type><title>Dielectric, ferroelectric, magnetic and multiferroic properties of xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics</title><source>SpringerLink Journals</source><creator>Li, Wenchuan ; Wu, Heng ; Ao, Hong ; Zeng, Zhixin ; Gao, Rongli ; Cai, Wei ; Fu, Chunlin ; Deng, Xiaoling ; Chen, Gang ; Wang, Zhenhua ; Lei, Xiang</creator><creatorcontrib>Li, Wenchuan ; Wu, Heng ; Ao, Hong ; Zeng, Zhixin ; Gao, Rongli ; Cai, Wei ; Fu, Chunlin ; Deng, Xiaoling ; Chen, Gang ; Wang, Zhenhua ; Lei, Xiang</creatorcontrib><description>Multiferroic composite ceramics x Ni 0.15 Cu 0.25 Zn 0.6 Fe 2 O 4 -(1- x ) Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3 ( x  = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.9 and 1) were prepared by combining chemical co-precipitation method with sol–gel method; the microstructure, dielectric, ferroelectric, magnetic and multiferroic properties were comparatively investigated. XRD results show that all the specimens have obvious bi-phases structure. The grains with larger size are magnetic phase Ni 0.15 Cu 0.25 Zn 0.6 Fe 2 O 4 (NCZF), while that of smaller size can be attributed to ferroelectric phase Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3 (BCZT). The dielectric constant of the sample with x  = 0.6 is the largest at low frequency but the specimen x  = 0.2 has the highest value of dielectric constant in high-frequency region. When x  = 0.9, the ceramic has the largest loss, while it presents the lowest loss value when x  = 0.3. The height of the peak decreases with increase in the frequency, and the position of the peak moves to higher temperature range with the decrease in x . The dielectric loss increases sharply with temperature, especially when x  = 0.9, when the temperature is higher than 300 °C, the dielectric loss reaches hundreds of times under low frequency. Al samples present apparent ferroelectric hysteresis loops, but further characterization shows that the hysteresis may be attributed to leakage current. The remnant polarization( P r ) and coercive field( E c ) do not monotonically change with x , P r is 0.1576 μC/cm 2 at 2 kHz when x  = 0.6. The magnetization monotonically changes with the x , indicating that there is a strong interfacial interaction between the two phases. Under the action of an external magnetic field of 1 mT, the magnetoelectric (ME) coupling is the strongest (relative polarization change 37%) when x  = 0.2.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-021-05060-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Ceramics ; Characterization and Evaluation of Materials ; Chemical precipitation ; Coercivity ; Condensed Matter Physics ; Dielectric loss ; Ferroelectric materials ; Ferroelectricity ; Hysteresis loops ; Leakage current ; Low frequencies ; Machines ; Magnetic properties ; Manufacturing ; Materials science ; Multiferroic materials ; Nanotechnology ; Optical and Electronic Materials ; Permittivity ; Physics ; Physics and Astronomy ; Polarization ; Processes ; Sol-gel processes ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2021, Vol.127 (12), Article 915</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1640-92931d7966acc153fc0a8a952be7ddfb84e103ddcdc8b4ac8475c3e2ccfe617b3</citedby><cites>FETCH-LOGICAL-c1640-92931d7966acc153fc0a8a952be7ddfb84e103ddcdc8b4ac8475c3e2ccfe617b3</cites><orcidid>0000-0001-7255-9944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-021-05060-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-021-05060-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Wenchuan</creatorcontrib><creatorcontrib>Wu, Heng</creatorcontrib><creatorcontrib>Ao, Hong</creatorcontrib><creatorcontrib>Zeng, Zhixin</creatorcontrib><creatorcontrib>Gao, Rongli</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Fu, Chunlin</creatorcontrib><creatorcontrib>Deng, Xiaoling</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Wang, Zhenhua</creatorcontrib><creatorcontrib>Lei, Xiang</creatorcontrib><title>Dielectric, ferroelectric, magnetic and multiferroic properties of xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Multiferroic composite ceramics x Ni 0.15 Cu 0.25 Zn 0.6 Fe 2 O 4 -(1- x ) Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3 ( x  = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.9 and 1) were prepared by combining chemical co-precipitation method with sol–gel method; the microstructure, dielectric, ferroelectric, magnetic and multiferroic properties were comparatively investigated. XRD results show that all the specimens have obvious bi-phases structure. The grains with larger size are magnetic phase Ni 0.15 Cu 0.25 Zn 0.6 Fe 2 O 4 (NCZF), while that of smaller size can be attributed to ferroelectric phase Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3 (BCZT). The dielectric constant of the sample with x  = 0.6 is the largest at low frequency but the specimen x  = 0.2 has the highest value of dielectric constant in high-frequency region. When x  = 0.9, the ceramic has the largest loss, while it presents the lowest loss value when x  = 0.3. The height of the peak decreases with increase in the frequency, and the position of the peak moves to higher temperature range with the decrease in x . The dielectric loss increases sharply with temperature, especially when x  = 0.9, when the temperature is higher than 300 °C, the dielectric loss reaches hundreds of times under low frequency. Al samples present apparent ferroelectric hysteresis loops, but further characterization shows that the hysteresis may be attributed to leakage current. The remnant polarization( P r ) and coercive field( E c ) do not monotonically change with x , P r is 0.1576 μC/cm 2 at 2 kHz when x  = 0.6. The magnetization monotonically changes with the x , indicating that there is a strong interfacial interaction between the two phases. Under the action of an external magnetic field of 1 mT, the magnetoelectric (ME) coupling is the strongest (relative polarization change 37%) when x  = 0.2.</description><subject>Applied physics</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical precipitation</subject><subject>Coercivity</subject><subject>Condensed Matter Physics</subject><subject>Dielectric loss</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Hysteresis loops</subject><subject>Leakage current</subject><subject>Low frequencies</subject><subject>Machines</subject><subject>Magnetic properties</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Multiferroic materials</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Permittivity</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization</subject><subject>Processes</subject><subject>Sol-gel processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKcFLwqmTpLN7uao9RPEXuqll5DOzkqku1uTLehv8E-bWsGbc8iQ8LyT5GHsRMBYAJSXEUApw0EKDhoK4LDDRiJXkkOhYJeNwOQlr5Qp9tlBjG-QKpdyxL5uPC0Jh-DxImsohP5v27rXjgaPmevqrF0vB_8DpINV6FcUBk8x65vs49mnZ-jJGsZSzzsYF3ckpzk_E_zj_NrBuNITtyHmIa2zBJupyrBvV330A2VIwbUe4xHba9wy0vFvP2Qvd7ezyQN_mt4_Tq6eOIoiB26kUaIuTVE4RKFVg-AqZ7RcUFnXzaLKSYCqa6yxWuQOq7zUqEgiNlSIcqEO2el2bvrG-5riYN_6dejSlVZqU2pIniBRckth6GMM1NhV8K0Ln1aA3Ui3W-k2Sbc_0u0mpLahmODulcLf6H9S38czggA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Li, Wenchuan</creator><creator>Wu, Heng</creator><creator>Ao, Hong</creator><creator>Zeng, Zhixin</creator><creator>Gao, Rongli</creator><creator>Cai, Wei</creator><creator>Fu, Chunlin</creator><creator>Deng, Xiaoling</creator><creator>Chen, Gang</creator><creator>Wang, Zhenhua</creator><creator>Lei, Xiang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7255-9944</orcidid></search><sort><creationdate>2021</creationdate><title>Dielectric, ferroelectric, magnetic and multiferroic properties of xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics</title><author>Li, Wenchuan ; Wu, Heng ; Ao, Hong ; Zeng, Zhixin ; Gao, Rongli ; Cai, Wei ; Fu, Chunlin ; Deng, Xiaoling ; Chen, Gang ; Wang, Zhenhua ; Lei, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1640-92931d7966acc153fc0a8a952be7ddfb84e103ddcdc8b4ac8475c3e2ccfe617b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical precipitation</topic><topic>Coercivity</topic><topic>Condensed Matter Physics</topic><topic>Dielectric loss</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Hysteresis loops</topic><topic>Leakage current</topic><topic>Low frequencies</topic><topic>Machines</topic><topic>Magnetic properties</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Multiferroic materials</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Permittivity</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization</topic><topic>Processes</topic><topic>Sol-gel processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenchuan</creatorcontrib><creatorcontrib>Wu, Heng</creatorcontrib><creatorcontrib>Ao, Hong</creatorcontrib><creatorcontrib>Zeng, Zhixin</creatorcontrib><creatorcontrib>Gao, Rongli</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Fu, Chunlin</creatorcontrib><creatorcontrib>Deng, Xiaoling</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Wang, Zhenhua</creatorcontrib><creatorcontrib>Lei, Xiang</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenchuan</au><au>Wu, Heng</au><au>Ao, Hong</au><au>Zeng, Zhixin</au><au>Gao, Rongli</au><au>Cai, Wei</au><au>Fu, Chunlin</au><au>Deng, Xiaoling</au><au>Chen, Gang</au><au>Wang, Zhenhua</au><au>Lei, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric, ferroelectric, magnetic and multiferroic properties of xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2021</date><risdate>2021</risdate><volume>127</volume><issue>12</issue><artnum>915</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Multiferroic composite ceramics x Ni 0.15 Cu 0.25 Zn 0.6 Fe 2 O 4 -(1- x ) Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3 ( x  = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.9 and 1) were prepared by combining chemical co-precipitation method with sol–gel method; the microstructure, dielectric, ferroelectric, magnetic and multiferroic properties were comparatively investigated. XRD results show that all the specimens have obvious bi-phases structure. The grains with larger size are magnetic phase Ni 0.15 Cu 0.25 Zn 0.6 Fe 2 O 4 (NCZF), while that of smaller size can be attributed to ferroelectric phase Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3 (BCZT). The dielectric constant of the sample with x  = 0.6 is the largest at low frequency but the specimen x  = 0.2 has the highest value of dielectric constant in high-frequency region. When x  = 0.9, the ceramic has the largest loss, while it presents the lowest loss value when x  = 0.3. The height of the peak decreases with increase in the frequency, and the position of the peak moves to higher temperature range with the decrease in x . The dielectric loss increases sharply with temperature, especially when x  = 0.9, when the temperature is higher than 300 °C, the dielectric loss reaches hundreds of times under low frequency. Al samples present apparent ferroelectric hysteresis loops, but further characterization shows that the hysteresis may be attributed to leakage current. The remnant polarization( P r ) and coercive field( E c ) do not monotonically change with x , P r is 0.1576 μC/cm 2 at 2 kHz when x  = 0.6. The magnetization monotonically changes with the x , indicating that there is a strong interfacial interaction between the two phases. Under the action of an external magnetic field of 1 mT, the magnetoelectric (ME) coupling is the strongest (relative polarization change 37%) when x  = 0.2.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-021-05060-0</doi><orcidid>https://orcid.org/0000-0001-7255-9944</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2021, Vol.127 (12), Article 915
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2597508390
source SpringerLink Journals
subjects Applied physics
Ceramics
Characterization and Evaluation of Materials
Chemical precipitation
Coercivity
Condensed Matter Physics
Dielectric loss
Ferroelectric materials
Ferroelectricity
Hysteresis loops
Leakage current
Low frequencies
Machines
Magnetic properties
Manufacturing
Materials science
Multiferroic materials
Nanotechnology
Optical and Electronic Materials
Permittivity
Physics
Physics and Astronomy
Polarization
Processes
Sol-gel processes
Surfaces and Interfaces
Thin Films
title Dielectric, ferroelectric, magnetic and multiferroic properties of xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric,%20ferroelectric,%20magnetic%20and%20multiferroic%20properties%20of%20xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3%20composite%20ceramics&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Li,%20Wenchuan&rft.date=2021&rft.volume=127&rft.issue=12&rft.artnum=915&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-021-05060-0&rft_dat=%3Cproquest_cross%3E2597508390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597508390&rft_id=info:pmid/&rfr_iscdi=true