Dielectric, ferroelectric, magnetic and multiferroic properties of xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics
Multiferroic composite ceramics x Ni 0.15 Cu 0.25 Zn 0.6 Fe 2 O 4 -(1- x ) Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3 ( x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.9 and 1) were prepared by combining chemical co-precipitation method with sol–gel method; the microstructure, dielectric, ferroelectric, magnetic and mult...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2021, Vol.127 (12), Article 915 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 127 |
creator | Li, Wenchuan Wu, Heng Ao, Hong Zeng, Zhixin Gao, Rongli Cai, Wei Fu, Chunlin Deng, Xiaoling Chen, Gang Wang, Zhenhua Lei, Xiang |
description | Multiferroic composite ceramics
x
Ni
0.15
Cu
0.25
Zn
0.6
Fe
2
O
4
-(1-
x
) Ba
0.85
Ca
0.15
Zr
0.1
Ti
0.9
O
3
(
x
= 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.9 and 1) were prepared by combining chemical co-precipitation method with sol–gel method; the microstructure, dielectric, ferroelectric, magnetic and multiferroic properties were comparatively investigated. XRD results show that all the specimens have obvious bi-phases structure. The grains with larger size are magnetic phase Ni
0.15
Cu
0.25
Zn
0.6
Fe
2
O
4
(NCZF), while that of smaller size can be attributed to ferroelectric phase Ba
0.85
Ca
0.15
Zr
0.1
Ti
0.9
O
3
(BCZT). The dielectric constant of the sample with
x
= 0.6 is the largest at low frequency but the specimen
x
= 0.2 has the highest value of dielectric constant in high-frequency region. When
x
= 0.9, the ceramic has the largest loss, while it presents the lowest loss value when
x
= 0.3. The height of the peak decreases with increase in the frequency, and the position of the peak moves to higher temperature range with the decrease in
x
. The dielectric loss increases sharply with temperature, especially when
x
= 0.9, when the temperature is higher than 300 °C, the dielectric loss reaches hundreds of times under low frequency. Al samples present apparent ferroelectric hysteresis loops, but further characterization shows that the hysteresis may be attributed to leakage current. The remnant polarization(
P
r
) and coercive field(
E
c
) do not monotonically change with
x
,
P
r
is 0.1576 μC/cm
2
at 2 kHz when
x
= 0.6. The magnetization monotonically changes with the
x
, indicating that there is a strong interfacial interaction between the two phases. Under the action of an external magnetic field of 1 mT, the magnetoelectric (ME) coupling is the strongest (relative polarization change 37%) when
x
= 0.2. |
doi_str_mv | 10.1007/s00339-021-05060-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2597508390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597508390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1640-92931d7966acc153fc0a8a952be7ddfb84e103ddcdc8b4ac8475c3e2ccfe617b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKcFLwqmTpLN7uao9RPEXuqll5DOzkqku1uTLehv8E-bWsGbc8iQ8LyT5GHsRMBYAJSXEUApw0EKDhoK4LDDRiJXkkOhYJeNwOQlr5Qp9tlBjG-QKpdyxL5uPC0Jh-DxImsohP5v27rXjgaPmevqrF0vB_8DpINV6FcUBk8x65vs49mnZ-jJGsZSzzsYF3ckpzk_E_zj_NrBuNITtyHmIa2zBJupyrBvV330A2VIwbUe4xHba9wy0vFvP2Qvd7ezyQN_mt4_Tq6eOIoiB26kUaIuTVE4RKFVg-AqZ7RcUFnXzaLKSYCqa6yxWuQOq7zUqEgiNlSIcqEO2el2bvrG-5riYN_6dejSlVZqU2pIniBRckth6GMM1NhV8K0Ln1aA3Ui3W-k2Sbc_0u0mpLahmODulcLf6H9S38czggA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597508390</pqid></control><display><type>article</type><title>Dielectric, ferroelectric, magnetic and multiferroic properties of xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics</title><source>SpringerLink Journals</source><creator>Li, Wenchuan ; Wu, Heng ; Ao, Hong ; Zeng, Zhixin ; Gao, Rongli ; Cai, Wei ; Fu, Chunlin ; Deng, Xiaoling ; Chen, Gang ; Wang, Zhenhua ; Lei, Xiang</creator><creatorcontrib>Li, Wenchuan ; Wu, Heng ; Ao, Hong ; Zeng, Zhixin ; Gao, Rongli ; Cai, Wei ; Fu, Chunlin ; Deng, Xiaoling ; Chen, Gang ; Wang, Zhenhua ; Lei, Xiang</creatorcontrib><description>Multiferroic composite ceramics
x
Ni
0.15
Cu
0.25
Zn
0.6
Fe
2
O
4
-(1-
x
) Ba
0.85
Ca
0.15
Zr
0.1
Ti
0.9
O
3
(
x
= 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.9 and 1) were prepared by combining chemical co-precipitation method with sol–gel method; the microstructure, dielectric, ferroelectric, magnetic and multiferroic properties were comparatively investigated. XRD results show that all the specimens have obvious bi-phases structure. The grains with larger size are magnetic phase Ni
0.15
Cu
0.25
Zn
0.6
Fe
2
O
4
(NCZF), while that of smaller size can be attributed to ferroelectric phase Ba
0.85
Ca
0.15
Zr
0.1
Ti
0.9
O
3
(BCZT). The dielectric constant of the sample with
x
= 0.6 is the largest at low frequency but the specimen
x
= 0.2 has the highest value of dielectric constant in high-frequency region. When
x
= 0.9, the ceramic has the largest loss, while it presents the lowest loss value when
x
= 0.3. The height of the peak decreases with increase in the frequency, and the position of the peak moves to higher temperature range with the decrease in
x
. The dielectric loss increases sharply with temperature, especially when
x
= 0.9, when the temperature is higher than 300 °C, the dielectric loss reaches hundreds of times under low frequency. Al samples present apparent ferroelectric hysteresis loops, but further characterization shows that the hysteresis may be attributed to leakage current. The remnant polarization(
P
r
) and coercive field(
E
c
) do not monotonically change with
x
,
P
r
is 0.1576 μC/cm
2
at 2 kHz when
x
= 0.6. The magnetization monotonically changes with the
x
, indicating that there is a strong interfacial interaction between the two phases. Under the action of an external magnetic field of 1 mT, the magnetoelectric (ME) coupling is the strongest (relative polarization change 37%) when
x
= 0.2.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-021-05060-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Ceramics ; Characterization and Evaluation of Materials ; Chemical precipitation ; Coercivity ; Condensed Matter Physics ; Dielectric loss ; Ferroelectric materials ; Ferroelectricity ; Hysteresis loops ; Leakage current ; Low frequencies ; Machines ; Magnetic properties ; Manufacturing ; Materials science ; Multiferroic materials ; Nanotechnology ; Optical and Electronic Materials ; Permittivity ; Physics ; Physics and Astronomy ; Polarization ; Processes ; Sol-gel processes ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2021, Vol.127 (12), Article 915</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1640-92931d7966acc153fc0a8a952be7ddfb84e103ddcdc8b4ac8475c3e2ccfe617b3</citedby><cites>FETCH-LOGICAL-c1640-92931d7966acc153fc0a8a952be7ddfb84e103ddcdc8b4ac8475c3e2ccfe617b3</cites><orcidid>0000-0001-7255-9944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-021-05060-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-021-05060-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Wenchuan</creatorcontrib><creatorcontrib>Wu, Heng</creatorcontrib><creatorcontrib>Ao, Hong</creatorcontrib><creatorcontrib>Zeng, Zhixin</creatorcontrib><creatorcontrib>Gao, Rongli</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Fu, Chunlin</creatorcontrib><creatorcontrib>Deng, Xiaoling</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Wang, Zhenhua</creatorcontrib><creatorcontrib>Lei, Xiang</creatorcontrib><title>Dielectric, ferroelectric, magnetic and multiferroic properties of xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Multiferroic composite ceramics
x
Ni
0.15
Cu
0.25
Zn
0.6
Fe
2
O
4
-(1-
x
) Ba
0.85
Ca
0.15
Zr
0.1
Ti
0.9
O
3
(
x
= 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.9 and 1) were prepared by combining chemical co-precipitation method with sol–gel method; the microstructure, dielectric, ferroelectric, magnetic and multiferroic properties were comparatively investigated. XRD results show that all the specimens have obvious bi-phases structure. The grains with larger size are magnetic phase Ni
0.15
Cu
0.25
Zn
0.6
Fe
2
O
4
(NCZF), while that of smaller size can be attributed to ferroelectric phase Ba
0.85
Ca
0.15
Zr
0.1
Ti
0.9
O
3
(BCZT). The dielectric constant of the sample with
x
= 0.6 is the largest at low frequency but the specimen
x
= 0.2 has the highest value of dielectric constant in high-frequency region. When
x
= 0.9, the ceramic has the largest loss, while it presents the lowest loss value when
x
= 0.3. The height of the peak decreases with increase in the frequency, and the position of the peak moves to higher temperature range with the decrease in
x
. The dielectric loss increases sharply with temperature, especially when
x
= 0.9, when the temperature is higher than 300 °C, the dielectric loss reaches hundreds of times under low frequency. Al samples present apparent ferroelectric hysteresis loops, but further characterization shows that the hysteresis may be attributed to leakage current. The remnant polarization(
P
r
) and coercive field(
E
c
) do not monotonically change with
x
,
P
r
is 0.1576 μC/cm
2
at 2 kHz when
x
= 0.6. The magnetization monotonically changes with the
x
, indicating that there is a strong interfacial interaction between the two phases. Under the action of an external magnetic field of 1 mT, the magnetoelectric (ME) coupling is the strongest (relative polarization change 37%) when
x
= 0.2.</description><subject>Applied physics</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical precipitation</subject><subject>Coercivity</subject><subject>Condensed Matter Physics</subject><subject>Dielectric loss</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Hysteresis loops</subject><subject>Leakage current</subject><subject>Low frequencies</subject><subject>Machines</subject><subject>Magnetic properties</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Multiferroic materials</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Permittivity</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization</subject><subject>Processes</subject><subject>Sol-gel processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKcFLwqmTpLN7uao9RPEXuqll5DOzkqku1uTLehv8E-bWsGbc8iQ8LyT5GHsRMBYAJSXEUApw0EKDhoK4LDDRiJXkkOhYJeNwOQlr5Qp9tlBjG-QKpdyxL5uPC0Jh-DxImsohP5v27rXjgaPmevqrF0vB_8DpINV6FcUBk8x65vs49mnZ-jJGsZSzzsYF3ckpzk_E_zj_NrBuNITtyHmIa2zBJupyrBvV330A2VIwbUe4xHba9wy0vFvP2Qvd7ezyQN_mt4_Tq6eOIoiB26kUaIuTVE4RKFVg-AqZ7RcUFnXzaLKSYCqa6yxWuQOq7zUqEgiNlSIcqEO2el2bvrG-5riYN_6dejSlVZqU2pIniBRckth6GMM1NhV8K0Ln1aA3Ui3W-k2Sbc_0u0mpLahmODulcLf6H9S38czggA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Li, Wenchuan</creator><creator>Wu, Heng</creator><creator>Ao, Hong</creator><creator>Zeng, Zhixin</creator><creator>Gao, Rongli</creator><creator>Cai, Wei</creator><creator>Fu, Chunlin</creator><creator>Deng, Xiaoling</creator><creator>Chen, Gang</creator><creator>Wang, Zhenhua</creator><creator>Lei, Xiang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7255-9944</orcidid></search><sort><creationdate>2021</creationdate><title>Dielectric, ferroelectric, magnetic and multiferroic properties of xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics</title><author>Li, Wenchuan ; Wu, Heng ; Ao, Hong ; Zeng, Zhixin ; Gao, Rongli ; Cai, Wei ; Fu, Chunlin ; Deng, Xiaoling ; Chen, Gang ; Wang, Zhenhua ; Lei, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1640-92931d7966acc153fc0a8a952be7ddfb84e103ddcdc8b4ac8475c3e2ccfe617b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical precipitation</topic><topic>Coercivity</topic><topic>Condensed Matter Physics</topic><topic>Dielectric loss</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Hysteresis loops</topic><topic>Leakage current</topic><topic>Low frequencies</topic><topic>Machines</topic><topic>Magnetic properties</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Multiferroic materials</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Permittivity</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization</topic><topic>Processes</topic><topic>Sol-gel processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenchuan</creatorcontrib><creatorcontrib>Wu, Heng</creatorcontrib><creatorcontrib>Ao, Hong</creatorcontrib><creatorcontrib>Zeng, Zhixin</creatorcontrib><creatorcontrib>Gao, Rongli</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Fu, Chunlin</creatorcontrib><creatorcontrib>Deng, Xiaoling</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Wang, Zhenhua</creatorcontrib><creatorcontrib>Lei, Xiang</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenchuan</au><au>Wu, Heng</au><au>Ao, Hong</au><au>Zeng, Zhixin</au><au>Gao, Rongli</au><au>Cai, Wei</au><au>Fu, Chunlin</au><au>Deng, Xiaoling</au><au>Chen, Gang</au><au>Wang, Zhenhua</au><au>Lei, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric, ferroelectric, magnetic and multiferroic properties of xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2021</date><risdate>2021</risdate><volume>127</volume><issue>12</issue><artnum>915</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Multiferroic composite ceramics
x
Ni
0.15
Cu
0.25
Zn
0.6
Fe
2
O
4
-(1-
x
) Ba
0.85
Ca
0.15
Zr
0.1
Ti
0.9
O
3
(
x
= 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.9 and 1) were prepared by combining chemical co-precipitation method with sol–gel method; the microstructure, dielectric, ferroelectric, magnetic and multiferroic properties were comparatively investigated. XRD results show that all the specimens have obvious bi-phases structure. The grains with larger size are magnetic phase Ni
0.15
Cu
0.25
Zn
0.6
Fe
2
O
4
(NCZF), while that of smaller size can be attributed to ferroelectric phase Ba
0.85
Ca
0.15
Zr
0.1
Ti
0.9
O
3
(BCZT). The dielectric constant of the sample with
x
= 0.6 is the largest at low frequency but the specimen
x
= 0.2 has the highest value of dielectric constant in high-frequency region. When
x
= 0.9, the ceramic has the largest loss, while it presents the lowest loss value when
x
= 0.3. The height of the peak decreases with increase in the frequency, and the position of the peak moves to higher temperature range with the decrease in
x
. The dielectric loss increases sharply with temperature, especially when
x
= 0.9, when the temperature is higher than 300 °C, the dielectric loss reaches hundreds of times under low frequency. Al samples present apparent ferroelectric hysteresis loops, but further characterization shows that the hysteresis may be attributed to leakage current. The remnant polarization(
P
r
) and coercive field(
E
c
) do not monotonically change with
x
,
P
r
is 0.1576 μC/cm
2
at 2 kHz when
x
= 0.6. The magnetization monotonically changes with the
x
, indicating that there is a strong interfacial interaction between the two phases. Under the action of an external magnetic field of 1 mT, the magnetoelectric (ME) coupling is the strongest (relative polarization change 37%) when
x
= 0.2.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-021-05060-0</doi><orcidid>https://orcid.org/0000-0001-7255-9944</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2021, Vol.127 (12), Article 915 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2597508390 |
source | SpringerLink Journals |
subjects | Applied physics Ceramics Characterization and Evaluation of Materials Chemical precipitation Coercivity Condensed Matter Physics Dielectric loss Ferroelectric materials Ferroelectricity Hysteresis loops Leakage current Low frequencies Machines Magnetic properties Manufacturing Materials science Multiferroic materials Nanotechnology Optical and Electronic Materials Permittivity Physics Physics and Astronomy Polarization Processes Sol-gel processes Surfaces and Interfaces Thin Films |
title | Dielectric, ferroelectric, magnetic and multiferroic properties of xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric,%20ferroelectric,%20magnetic%20and%20multiferroic%20properties%20of%20xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3%20composite%20ceramics&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Li,%20Wenchuan&rft.date=2021&rft.volume=127&rft.issue=12&rft.artnum=915&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-021-05060-0&rft_dat=%3Cproquest_cross%3E2597508390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597508390&rft_id=info:pmid/&rfr_iscdi=true |