Development and Challenges of Thermal Interface Materials: A Review

With the development of electronic equipment components in the direction of integration, miniaturization, and intelligence, their increasingly high heat dissipation requirements pose a high challenge to the thermal conductivity (TC) of thermal interface materials (TIMs). Polymer‐based composite mate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular materials and engineering 2021-11, Vol.306 (11), p.n/a
Hauptverfasser: Yuan, Zhenye, Ma, Haoqi, Hussien, Mohammed A., Feng, Yakai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Macromolecular materials and engineering
container_volume 306
creator Yuan, Zhenye
Ma, Haoqi
Hussien, Mohammed A.
Feng, Yakai
description With the development of electronic equipment components in the direction of integration, miniaturization, and intelligence, their increasingly high heat dissipation requirements pose a high challenge to the thermal conductivity (TC) of thermal interface materials (TIMs). Polymer‐based composite materials with high TC have gradually been favored because of their good processing performance, low cost, and low density. It is important to summarize the relationship between the problems of low heat conduction and their solutions in relation to polymer‐based composite materials. For this purpose, this review comprehensively discusses the basic mechanisms of heat transfer inside polymer‐based TIMs, the current challenges, and future prospects for improving TC. Strategies involving surface modification and network construction can reduce interfacial thermal resistance and enhance heat conduction. This review comprehensively discusses the basic mechanisms of heat transfer inside polymer‐based thermal interface materials (TIMs), current challenges, and future prospects for improving thermal conductivity. Thermal conductivity is subject to the interfacial thermal resistance of filler/matrix as well as filler/filler and the heat conduction path in the polymer matrix.
doi_str_mv 10.1002/mame.202100428
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2597445836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597445836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-862eb90e834898fa770af0f4a267e07651835ab67f49fd3e839eca01de5d6173</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKtb1wHXU_OaSeKujK0WWgTpPqQzN3bKvEz6oP_e1IouXd1zL9-5Bw5C95SMKCHssbENjBhhcRFMXaABFVwnjKTi8lurRArNrtFNCBtCqFSaD1D-DHuou76BdottW-J8besa2g8IuHN4uQbf2BrP2i14ZwvACxtVZevwhMf4HfYVHG7RlYsHuPuZQ7ScTpb5azJ_e5nl43lS8JiWqIzBShNQXCitnJWSWEecsCyTQGSWUsVTu8qkE9qVPHIaCktoCWmZUcmH6OH8tvfd5w7C1my6nW9jomGplkKkimeRGp2pwncheHCm91Vj_dFQYk49mVNP5renaNBnw6Gq4fgPbRbjxeTP-wVcFWrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597445836</pqid></control><display><type>article</type><title>Development and Challenges of Thermal Interface Materials: A Review</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yuan, Zhenye ; Ma, Haoqi ; Hussien, Mohammed A. ; Feng, Yakai</creator><creatorcontrib>Yuan, Zhenye ; Ma, Haoqi ; Hussien, Mohammed A. ; Feng, Yakai</creatorcontrib><description>With the development of electronic equipment components in the direction of integration, miniaturization, and intelligence, their increasingly high heat dissipation requirements pose a high challenge to the thermal conductivity (TC) of thermal interface materials (TIMs). Polymer‐based composite materials with high TC have gradually been favored because of their good processing performance, low cost, and low density. It is important to summarize the relationship between the problems of low heat conduction and their solutions in relation to polymer‐based composite materials. For this purpose, this review comprehensively discusses the basic mechanisms of heat transfer inside polymer‐based TIMs, the current challenges, and future prospects for improving TC. Strategies involving surface modification and network construction can reduce interfacial thermal resistance and enhance heat conduction. This review comprehensively discusses the basic mechanisms of heat transfer inside polymer‐based thermal interface materials (TIMs), current challenges, and future prospects for improving thermal conductivity. Thermal conductivity is subject to the interfacial thermal resistance of filler/matrix as well as filler/filler and the heat conduction path in the polymer matrix.</description><identifier>ISSN: 1438-7492</identifier><identifier>EISSN: 1439-2054</identifier><identifier>DOI: 10.1002/mame.202100428</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>3D thermal networks ; Composite materials ; Conduction heating ; Conductive heat transfer ; Electronic equipment ; filler orientation ; fillers ; Miniaturization ; polymer based TIMs ; Polymer matrix composites ; Polymers ; surface modification ; Thermal conductivity ; Thermal resistance</subject><ispartof>Macromolecular materials and engineering, 2021-11, Vol.306 (11), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-862eb90e834898fa770af0f4a267e07651835ab67f49fd3e839eca01de5d6173</citedby><cites>FETCH-LOGICAL-c3178-862eb90e834898fa770af0f4a267e07651835ab67f49fd3e839eca01de5d6173</cites><orcidid>0000-0002-4511-0874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmame.202100428$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmame.202100428$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yuan, Zhenye</creatorcontrib><creatorcontrib>Ma, Haoqi</creatorcontrib><creatorcontrib>Hussien, Mohammed A.</creatorcontrib><creatorcontrib>Feng, Yakai</creatorcontrib><title>Development and Challenges of Thermal Interface Materials: A Review</title><title>Macromolecular materials and engineering</title><description>With the development of electronic equipment components in the direction of integration, miniaturization, and intelligence, their increasingly high heat dissipation requirements pose a high challenge to the thermal conductivity (TC) of thermal interface materials (TIMs). Polymer‐based composite materials with high TC have gradually been favored because of their good processing performance, low cost, and low density. It is important to summarize the relationship between the problems of low heat conduction and their solutions in relation to polymer‐based composite materials. For this purpose, this review comprehensively discusses the basic mechanisms of heat transfer inside polymer‐based TIMs, the current challenges, and future prospects for improving TC. Strategies involving surface modification and network construction can reduce interfacial thermal resistance and enhance heat conduction. This review comprehensively discusses the basic mechanisms of heat transfer inside polymer‐based thermal interface materials (TIMs), current challenges, and future prospects for improving thermal conductivity. Thermal conductivity is subject to the interfacial thermal resistance of filler/matrix as well as filler/filler and the heat conduction path in the polymer matrix.</description><subject>3D thermal networks</subject><subject>Composite materials</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Electronic equipment</subject><subject>filler orientation</subject><subject>fillers</subject><subject>Miniaturization</subject><subject>polymer based TIMs</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>surface modification</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><issn>1438-7492</issn><issn>1439-2054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKtb1wHXU_OaSeKujK0WWgTpPqQzN3bKvEz6oP_e1IouXd1zL9-5Bw5C95SMKCHssbENjBhhcRFMXaABFVwnjKTi8lurRArNrtFNCBtCqFSaD1D-DHuou76BdottW-J8besa2g8IuHN4uQbf2BrP2i14ZwvACxtVZevwhMf4HfYVHG7RlYsHuPuZQ7ScTpb5azJ_e5nl43lS8JiWqIzBShNQXCitnJWSWEecsCyTQGSWUsVTu8qkE9qVPHIaCktoCWmZUcmH6OH8tvfd5w7C1my6nW9jomGplkKkimeRGp2pwncheHCm91Vj_dFQYk49mVNP5renaNBnw6Gq4fgPbRbjxeTP-wVcFWrM</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Yuan, Zhenye</creator><creator>Ma, Haoqi</creator><creator>Hussien, Mohammed A.</creator><creator>Feng, Yakai</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4511-0874</orcidid></search><sort><creationdate>202111</creationdate><title>Development and Challenges of Thermal Interface Materials: A Review</title><author>Yuan, Zhenye ; Ma, Haoqi ; Hussien, Mohammed A. ; Feng, Yakai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-862eb90e834898fa770af0f4a267e07651835ab67f49fd3e839eca01de5d6173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D thermal networks</topic><topic>Composite materials</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Electronic equipment</topic><topic>filler orientation</topic><topic>fillers</topic><topic>Miniaturization</topic><topic>polymer based TIMs</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>surface modification</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Zhenye</creatorcontrib><creatorcontrib>Ma, Haoqi</creatorcontrib><creatorcontrib>Hussien, Mohammed A.</creatorcontrib><creatorcontrib>Feng, Yakai</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Macromolecular materials and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Zhenye</au><au>Ma, Haoqi</au><au>Hussien, Mohammed A.</au><au>Feng, Yakai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Challenges of Thermal Interface Materials: A Review</atitle><jtitle>Macromolecular materials and engineering</jtitle><date>2021-11</date><risdate>2021</risdate><volume>306</volume><issue>11</issue><epage>n/a</epage><issn>1438-7492</issn><eissn>1439-2054</eissn><abstract>With the development of electronic equipment components in the direction of integration, miniaturization, and intelligence, their increasingly high heat dissipation requirements pose a high challenge to the thermal conductivity (TC) of thermal interface materials (TIMs). Polymer‐based composite materials with high TC have gradually been favored because of their good processing performance, low cost, and low density. It is important to summarize the relationship between the problems of low heat conduction and their solutions in relation to polymer‐based composite materials. For this purpose, this review comprehensively discusses the basic mechanisms of heat transfer inside polymer‐based TIMs, the current challenges, and future prospects for improving TC. Strategies involving surface modification and network construction can reduce interfacial thermal resistance and enhance heat conduction. This review comprehensively discusses the basic mechanisms of heat transfer inside polymer‐based thermal interface materials (TIMs), current challenges, and future prospects for improving thermal conductivity. Thermal conductivity is subject to the interfacial thermal resistance of filler/matrix as well as filler/filler and the heat conduction path in the polymer matrix.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/mame.202100428</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4511-0874</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1438-7492
ispartof Macromolecular materials and engineering, 2021-11, Vol.306 (11), p.n/a
issn 1438-7492
1439-2054
language eng
recordid cdi_proquest_journals_2597445836
source Wiley Online Library Journals Frontfile Complete
subjects 3D thermal networks
Composite materials
Conduction heating
Conductive heat transfer
Electronic equipment
filler orientation
fillers
Miniaturization
polymer based TIMs
Polymer matrix composites
Polymers
surface modification
Thermal conductivity
Thermal resistance
title Development and Challenges of Thermal Interface Materials: A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Challenges%20of%20Thermal%20Interface%20Materials:%20A%20Review&rft.jtitle=Macromolecular%20materials%20and%20engineering&rft.au=Yuan,%20Zhenye&rft.date=2021-11&rft.volume=306&rft.issue=11&rft.epage=n/a&rft.issn=1438-7492&rft.eissn=1439-2054&rft_id=info:doi/10.1002/mame.202100428&rft_dat=%3Cproquest_cross%3E2597445836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597445836&rft_id=info:pmid/&rfr_iscdi=true