Nanostructure engineering by surficial induced approach: Porous metal oxide-carbon nanotube composite for lithium-ion battery

[Display omitted] •Nanostructure engineering by surficial induced approach.•The strong interface connection of active sites and conducting carbon matrix.•In situ formation of CNTs anchored Co-Ox.•Enhanced kinetics for Li-ion diffusion. Developing efficient materials is urgent to reach the challengin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2021-11, Vol.273, p.115417, Article 115417
Hauptverfasser: Najam, Tayyaba, Aslam, Muhammad Kashif, Rafiq, Khezina, Altaf Nazir, Muhammad, Rehman, Aziz ur, Imran, Muhammad, Javed, Muhammad Sufyan, Cai, Xingke, Shah, Syed Shoaib Ahmad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115417
container_title Materials science & engineering. B, Solid-state materials for advanced technology
container_volume 273
creator Najam, Tayyaba
Aslam, Muhammad Kashif
Rafiq, Khezina
Altaf Nazir, Muhammad
Rehman, Aziz ur
Imran, Muhammad
Javed, Muhammad Sufyan
Cai, Xingke
Shah, Syed Shoaib Ahmad
description [Display omitted] •Nanostructure engineering by surficial induced approach.•The strong interface connection of active sites and conducting carbon matrix.•In situ formation of CNTs anchored Co-Ox.•Enhanced kinetics for Li-ion diffusion. Developing efficient materials is urgent to reach the challenging demand of next-generation energy devices from portable electronic devices to electric grids and electric vehicles. Nanostructure interface engineering is an emerging strategy to prepare advanced materials according to demand. Herein, we reported the surface induced metal organic frameworks (MOFs) on the layered double hydroxide (LDH) following the controlled pyrolysis, which results in the formation of various structural morphologies. Among others, in situ produced carbon nanotubes (CNTs) anchored Co-Ox are proposed as advantageous materials with coped properties suitable for next generation electrochemical devices such as Li-ion batteries. The MOF-inherited higher surface area and porosity with CNTs channels improved the easily transport of ions during charging/discharging process. Further, the well exposed Co-Ox are structurally flexible and own accessible sites for Li+ extraction/insertion that can alleviate drastic volumetric fluctuations during charge/discharge cycling. For the realization of concept, we assembled LIB, which showed a high initial specific discharge capacity of 948 mA h g−1 at 1 A g−1 of current density, a high reversible capacity of 723 mA hg−1 after a long cycling up to 500 cycles at 1 A g−1 of current density and excellent rate capability with ~ 97% capacity retention. Hence, the high electrochemical activity is ascribed to the porous carbon/carbon nanotubes stabilized by metal oxides nanoparticles, which is reflection of our synthetic strategy.
doi_str_mv 10.1016/j.mseb.2021.115417
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596965282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921510721003755</els_id><sourcerecordid>2596965282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-a6f52424dccb1c5512cb12744b953c4cf066f4bf3f3cd7019e8dd4efb3abd5f03</originalsourceid><addsrcrecordid>eNp9kLtuGzEURAkjBqzI_gFXBFKvQnLJXa2RJjBiJ4CRpLBrgo9LiYKWVPgIrML_bgpKnWqKOzN3cBC6pWRFCR0-71ZzBr1ihNEVpYLT8QIt6HrsOz5x_gEtyMRoJygZr9DHnHeEEMoYW6C3nyrEXFI1pSbAEDY-ACQfNlgfca7JeePVHvtgqwGL1eGQojLbO_w7plgznqG0c3z1Fjqjko4Bh1ZZqgZs4nyI2RfALia892Xr69z5ZtGqFEjHa3Tp1D7DzT9dopeHb8_337unX48_7r8-daZn69KpwQnGGbfGaGqEoKwpGznXk-gNN44Mg-Pa9a43diR0grW1HJzulbbCkX6JPp172_g_FXKRu1hTaC8lE9MwDYKtWXOxs8ukmHMCJw_JzyodJSXyhFnu5AmzPGGWZ8wt9OUcgrb_r4cks_EQGiufwBRpo_9f_B32wYm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596965282</pqid></control><display><type>article</type><title>Nanostructure engineering by surficial induced approach: Porous metal oxide-carbon nanotube composite for lithium-ion battery</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Najam, Tayyaba ; Aslam, Muhammad Kashif ; Rafiq, Khezina ; Altaf Nazir, Muhammad ; Rehman, Aziz ur ; Imran, Muhammad ; Javed, Muhammad Sufyan ; Cai, Xingke ; Shah, Syed Shoaib Ahmad</creator><creatorcontrib>Najam, Tayyaba ; Aslam, Muhammad Kashif ; Rafiq, Khezina ; Altaf Nazir, Muhammad ; Rehman, Aziz ur ; Imran, Muhammad ; Javed, Muhammad Sufyan ; Cai, Xingke ; Shah, Syed Shoaib Ahmad</creatorcontrib><description>[Display omitted] •Nanostructure engineering by surficial induced approach.•The strong interface connection of active sites and conducting carbon matrix.•In situ formation of CNTs anchored Co-Ox.•Enhanced kinetics for Li-ion diffusion. Developing efficient materials is urgent to reach the challenging demand of next-generation energy devices from portable electronic devices to electric grids and electric vehicles. Nanostructure interface engineering is an emerging strategy to prepare advanced materials according to demand. Herein, we reported the surface induced metal organic frameworks (MOFs) on the layered double hydroxide (LDH) following the controlled pyrolysis, which results in the formation of various structural morphologies. Among others, in situ produced carbon nanotubes (CNTs) anchored Co-Ox are proposed as advantageous materials with coped properties suitable for next generation electrochemical devices such as Li-ion batteries. The MOF-inherited higher surface area and porosity with CNTs channels improved the easily transport of ions during charging/discharging process. Further, the well exposed Co-Ox are structurally flexible and own accessible sites for Li+ extraction/insertion that can alleviate drastic volumetric fluctuations during charge/discharge cycling. For the realization of concept, we assembled LIB, which showed a high initial specific discharge capacity of 948 mA h g−1 at 1 A g−1 of current density, a high reversible capacity of 723 mA hg−1 after a long cycling up to 500 cycles at 1 A g−1 of current density and excellent rate capability with ~ 97% capacity retention. Hence, the high electrochemical activity is ascribed to the porous carbon/carbon nanotubes stabilized by metal oxides nanoparticles, which is reflection of our synthetic strategy.</description><identifier>ISSN: 0921-5107</identifier><identifier>EISSN: 1873-4944</identifier><identifier>DOI: 10.1016/j.mseb.2021.115417</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Carbon ; Carbon nanotubes ; Current density ; Discharge ; Electric vehicles ; Electronic devices ; Hydroxides ; Lithium-ion batteries ; Lithium-ion battery ; Metal oxide ; Metal oxides ; Metal-organic frameworks ; Morphology ; Nanoparticles ; Nanostructure ; Nanostructure engineering ; Portable equipment ; Pyrolysis ; Rechargeable batteries</subject><ispartof>Materials science &amp; engineering. B, Solid-state materials for advanced technology, 2021-11, Vol.273, p.115417, Article 115417</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-a6f52424dccb1c5512cb12744b953c4cf066f4bf3f3cd7019e8dd4efb3abd5f03</citedby><cites>FETCH-LOGICAL-c328t-a6f52424dccb1c5512cb12744b953c4cf066f4bf3f3cd7019e8dd4efb3abd5f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mseb.2021.115417$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Najam, Tayyaba</creatorcontrib><creatorcontrib>Aslam, Muhammad Kashif</creatorcontrib><creatorcontrib>Rafiq, Khezina</creatorcontrib><creatorcontrib>Altaf Nazir, Muhammad</creatorcontrib><creatorcontrib>Rehman, Aziz ur</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Javed, Muhammad Sufyan</creatorcontrib><creatorcontrib>Cai, Xingke</creatorcontrib><creatorcontrib>Shah, Syed Shoaib Ahmad</creatorcontrib><title>Nanostructure engineering by surficial induced approach: Porous metal oxide-carbon nanotube composite for lithium-ion battery</title><title>Materials science &amp; engineering. B, Solid-state materials for advanced technology</title><description>[Display omitted] •Nanostructure engineering by surficial induced approach.•The strong interface connection of active sites and conducting carbon matrix.•In situ formation of CNTs anchored Co-Ox.•Enhanced kinetics for Li-ion diffusion. Developing efficient materials is urgent to reach the challenging demand of next-generation energy devices from portable electronic devices to electric grids and electric vehicles. Nanostructure interface engineering is an emerging strategy to prepare advanced materials according to demand. Herein, we reported the surface induced metal organic frameworks (MOFs) on the layered double hydroxide (LDH) following the controlled pyrolysis, which results in the formation of various structural morphologies. Among others, in situ produced carbon nanotubes (CNTs) anchored Co-Ox are proposed as advantageous materials with coped properties suitable for next generation electrochemical devices such as Li-ion batteries. The MOF-inherited higher surface area and porosity with CNTs channels improved the easily transport of ions during charging/discharging process. Further, the well exposed Co-Ox are structurally flexible and own accessible sites for Li+ extraction/insertion that can alleviate drastic volumetric fluctuations during charge/discharge cycling. For the realization of concept, we assembled LIB, which showed a high initial specific discharge capacity of 948 mA h g−1 at 1 A g−1 of current density, a high reversible capacity of 723 mA hg−1 after a long cycling up to 500 cycles at 1 A g−1 of current density and excellent rate capability with ~ 97% capacity retention. Hence, the high electrochemical activity is ascribed to the porous carbon/carbon nanotubes stabilized by metal oxides nanoparticles, which is reflection of our synthetic strategy.</description><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Current density</subject><subject>Discharge</subject><subject>Electric vehicles</subject><subject>Electronic devices</subject><subject>Hydroxides</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Metal oxide</subject><subject>Metal oxides</subject><subject>Metal-organic frameworks</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanostructure engineering</subject><subject>Portable equipment</subject><subject>Pyrolysis</subject><subject>Rechargeable batteries</subject><issn>0921-5107</issn><issn>1873-4944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLtuGzEURAkjBqzI_gFXBFKvQnLJXa2RJjBiJ4CRpLBrgo9LiYKWVPgIrML_bgpKnWqKOzN3cBC6pWRFCR0-71ZzBr1ihNEVpYLT8QIt6HrsOz5x_gEtyMRoJygZr9DHnHeEEMoYW6C3nyrEXFI1pSbAEDY-ACQfNlgfca7JeePVHvtgqwGL1eGQojLbO_w7plgznqG0c3z1Fjqjko4Bh1ZZqgZs4nyI2RfALia892Xr69z5ZtGqFEjHa3Tp1D7DzT9dopeHb8_337unX48_7r8-daZn69KpwQnGGbfGaGqEoKwpGznXk-gNN44Mg-Pa9a43diR0grW1HJzulbbCkX6JPp172_g_FXKRu1hTaC8lE9MwDYKtWXOxs8ukmHMCJw_JzyodJSXyhFnu5AmzPGGWZ8wt9OUcgrb_r4cks_EQGiufwBRpo_9f_B32wYm4</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Najam, Tayyaba</creator><creator>Aslam, Muhammad Kashif</creator><creator>Rafiq, Khezina</creator><creator>Altaf Nazir, Muhammad</creator><creator>Rehman, Aziz ur</creator><creator>Imran, Muhammad</creator><creator>Javed, Muhammad Sufyan</creator><creator>Cai, Xingke</creator><creator>Shah, Syed Shoaib Ahmad</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202111</creationdate><title>Nanostructure engineering by surficial induced approach: Porous metal oxide-carbon nanotube composite for lithium-ion battery</title><author>Najam, Tayyaba ; Aslam, Muhammad Kashif ; Rafiq, Khezina ; Altaf Nazir, Muhammad ; Rehman, Aziz ur ; Imran, Muhammad ; Javed, Muhammad Sufyan ; Cai, Xingke ; Shah, Syed Shoaib Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-a6f52424dccb1c5512cb12744b953c4cf066f4bf3f3cd7019e8dd4efb3abd5f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Current density</topic><topic>Discharge</topic><topic>Electric vehicles</topic><topic>Electronic devices</topic><topic>Hydroxides</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Metal oxide</topic><topic>Metal oxides</topic><topic>Metal-organic frameworks</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanostructure engineering</topic><topic>Portable equipment</topic><topic>Pyrolysis</topic><topic>Rechargeable batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najam, Tayyaba</creatorcontrib><creatorcontrib>Aslam, Muhammad Kashif</creatorcontrib><creatorcontrib>Rafiq, Khezina</creatorcontrib><creatorcontrib>Altaf Nazir, Muhammad</creatorcontrib><creatorcontrib>Rehman, Aziz ur</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Javed, Muhammad Sufyan</creatorcontrib><creatorcontrib>Cai, Xingke</creatorcontrib><creatorcontrib>Shah, Syed Shoaib Ahmad</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najam, Tayyaba</au><au>Aslam, Muhammad Kashif</au><au>Rafiq, Khezina</au><au>Altaf Nazir, Muhammad</au><au>Rehman, Aziz ur</au><au>Imran, Muhammad</au><au>Javed, Muhammad Sufyan</au><au>Cai, Xingke</au><au>Shah, Syed Shoaib Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructure engineering by surficial induced approach: Porous metal oxide-carbon nanotube composite for lithium-ion battery</atitle><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle><date>2021-11</date><risdate>2021</risdate><volume>273</volume><spage>115417</spage><pages>115417-</pages><artnum>115417</artnum><issn>0921-5107</issn><eissn>1873-4944</eissn><abstract>[Display omitted] •Nanostructure engineering by surficial induced approach.•The strong interface connection of active sites and conducting carbon matrix.•In situ formation of CNTs anchored Co-Ox.•Enhanced kinetics for Li-ion diffusion. Developing efficient materials is urgent to reach the challenging demand of next-generation energy devices from portable electronic devices to electric grids and electric vehicles. Nanostructure interface engineering is an emerging strategy to prepare advanced materials according to demand. Herein, we reported the surface induced metal organic frameworks (MOFs) on the layered double hydroxide (LDH) following the controlled pyrolysis, which results in the formation of various structural morphologies. Among others, in situ produced carbon nanotubes (CNTs) anchored Co-Ox are proposed as advantageous materials with coped properties suitable for next generation electrochemical devices such as Li-ion batteries. The MOF-inherited higher surface area and porosity with CNTs channels improved the easily transport of ions during charging/discharging process. Further, the well exposed Co-Ox are structurally flexible and own accessible sites for Li+ extraction/insertion that can alleviate drastic volumetric fluctuations during charge/discharge cycling. For the realization of concept, we assembled LIB, which showed a high initial specific discharge capacity of 948 mA h g−1 at 1 A g−1 of current density, a high reversible capacity of 723 mA hg−1 after a long cycling up to 500 cycles at 1 A g−1 of current density and excellent rate capability with ~ 97% capacity retention. Hence, the high electrochemical activity is ascribed to the porous carbon/carbon nanotubes stabilized by metal oxides nanoparticles, which is reflection of our synthetic strategy.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mseb.2021.115417</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5107
ispartof Materials science & engineering. B, Solid-state materials for advanced technology, 2021-11, Vol.273, p.115417, Article 115417
issn 0921-5107
1873-4944
language eng
recordid cdi_proquest_journals_2596965282
source Elsevier ScienceDirect Journals Complete
subjects Carbon
Carbon nanotubes
Current density
Discharge
Electric vehicles
Electronic devices
Hydroxides
Lithium-ion batteries
Lithium-ion battery
Metal oxide
Metal oxides
Metal-organic frameworks
Morphology
Nanoparticles
Nanostructure
Nanostructure engineering
Portable equipment
Pyrolysis
Rechargeable batteries
title Nanostructure engineering by surficial induced approach: Porous metal oxide-carbon nanotube composite for lithium-ion battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructure%20engineering%20by%20surficial%20induced%20approach:%20Porous%20metal%20oxide-carbon%20nanotube%20composite%20for%20lithium-ion%20battery&rft.jtitle=Materials%20science%20&%20engineering.%20B,%20Solid-state%20materials%20for%20advanced%20technology&rft.au=Najam,%20Tayyaba&rft.date=2021-11&rft.volume=273&rft.spage=115417&rft.pages=115417-&rft.artnum=115417&rft.issn=0921-5107&rft.eissn=1873-4944&rft_id=info:doi/10.1016/j.mseb.2021.115417&rft_dat=%3Cproquest_cross%3E2596965282%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596965282&rft_id=info:pmid/&rft_els_id=S0921510721003755&rfr_iscdi=true