A variety of Euler’s sum of powers conjecture
We consider a variety of Euler’s sum of powers conjecture, i.e., whether the Diophantine system { n = a 1 + a 2 + … + a s − 1 , a 1 a 2 … a s − 1 ( a 1 + a 2 + … + a s − 1 ) = b s has positive integer or rational solutions n, b, a j , i = 1, 2, …, s − 1, s ⩾ 3. Using the theory of elliptic curves, w...
Gespeichert in:
Veröffentlicht in: | Czechoslovak Mathematical Journal 2021-12, Vol.71 (4), p.1099-1113 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a variety of Euler’s sum of powers conjecture, i.e., whether the Diophantine system
{
n
=
a
1
+
a
2
+
…
+
a
s
−
1
,
a
1
a
2
…
a
s
−
1
(
a
1
+
a
2
+
…
+
a
s
−
1
)
=
b
s
has positive integer or rational solutions
n, b, a
j
,
i
= 1, 2, …,
s
− 1,
s
⩾ 3. Using the theory of elliptic curves, we prove that it has no positive integer solution for
s
= 3, but there are infinitely many positive integers
n
such that it has a positive integer solution for
s
⩾ 4. As a corollary, for
s
⩾ 4 and any positive integer
n
, the above Diophantine system has a positive rational solution. Meanwhile, we give conditions such that it has infinitely many positive rational solutions for
s
⩾ 4 and a fixed positive integer
n
. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.21136/CMJ.2021.0210-20 |