Sparse grid approximation in weighted Wiener spaces
We study approximation properties of multivariate periodic functions from weighted Wiener spaces by sparse grids methods constructed with the help of quasi-interpolation operators. The class of such operators includes classical interpolation and sampling operators, Kantorovich-type operators, scalin...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kolomoitsev, Yurii Lomako, Tetiana Tikhonov, Segey |
description | We study approximation properties of multivariate periodic functions from weighted Wiener spaces by sparse grids methods constructed with the help of quasi-interpolation operators. The class of such operators includes classical interpolation and sampling operators, Kantorovich-type operators, scaling expansions associated with wavelet constructions, and others. We obtain the rate of convergence of the corresponding sparse grids methods in weighted Wiener norms as well as analogues of the Littlewood-Paley-type characterizations in terms of families of quasi-interpolation operators. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2596821129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596821129</sourcerecordid><originalsourceid>FETCH-proquest_journals_25968211293</originalsourceid><addsrcrecordid>eNqNi0EKwjAQAIMgWLR_CHguNBtT27Mo3hU8lmDXukWTmE3R59uDD_A0h5mZiQy0VkW9AViInHkoyxKqLRijM6FPwUZG2UfqpA0h-g89bSLvJDn5RurvCTt5IXQYJQd7RV6J-c0-GPMfl2J92J93x2K6XyNyagc_RjepFkxT1aAUNPq_6gs8DzSC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596821129</pqid></control><display><type>article</type><title>Sparse grid approximation in weighted Wiener spaces</title><source>Free E- Journals</source><creator>Kolomoitsev, Yurii ; Lomako, Tetiana ; Tikhonov, Segey</creator><creatorcontrib>Kolomoitsev, Yurii ; Lomako, Tetiana ; Tikhonov, Segey</creatorcontrib><description>We study approximation properties of multivariate periodic functions from weighted Wiener spaces by sparse grids methods constructed with the help of quasi-interpolation operators. The class of such operators includes classical interpolation and sampling operators, Kantorovich-type operators, scaling expansions associated with wavelet constructions, and others. We obtain the rate of convergence of the corresponding sparse grids methods in weighted Wiener norms as well as analogues of the Littlewood-Paley-type characterizations in terms of families of quasi-interpolation operators.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Interpolation ; Mathematical analysis ; Norms ; Operators ; Periodic functions</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kolomoitsev, Yurii</creatorcontrib><creatorcontrib>Lomako, Tetiana</creatorcontrib><creatorcontrib>Tikhonov, Segey</creatorcontrib><title>Sparse grid approximation in weighted Wiener spaces</title><title>arXiv.org</title><description>We study approximation properties of multivariate periodic functions from weighted Wiener spaces by sparse grids methods constructed with the help of quasi-interpolation operators. The class of such operators includes classical interpolation and sampling operators, Kantorovich-type operators, scaling expansions associated with wavelet constructions, and others. We obtain the rate of convergence of the corresponding sparse grids methods in weighted Wiener norms as well as analogues of the Littlewood-Paley-type characterizations in terms of families of quasi-interpolation operators.</description><subject>Approximation</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Norms</subject><subject>Operators</subject><subject>Periodic functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi0EKwjAQAIMgWLR_CHguNBtT27Mo3hU8lmDXukWTmE3R59uDD_A0h5mZiQy0VkW9AViInHkoyxKqLRijM6FPwUZG2UfqpA0h-g89bSLvJDn5RurvCTt5IXQYJQd7RV6J-c0-GPMfl2J92J93x2K6XyNyagc_RjepFkxT1aAUNPq_6gs8DzSC</recordid><startdate>20211111</startdate><enddate>20211111</enddate><creator>Kolomoitsev, Yurii</creator><creator>Lomako, Tetiana</creator><creator>Tikhonov, Segey</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211111</creationdate><title>Sparse grid approximation in weighted Wiener spaces</title><author>Kolomoitsev, Yurii ; Lomako, Tetiana ; Tikhonov, Segey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25968211293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Norms</topic><topic>Operators</topic><topic>Periodic functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Kolomoitsev, Yurii</creatorcontrib><creatorcontrib>Lomako, Tetiana</creatorcontrib><creatorcontrib>Tikhonov, Segey</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolomoitsev, Yurii</au><au>Lomako, Tetiana</au><au>Tikhonov, Segey</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Sparse grid approximation in weighted Wiener spaces</atitle><jtitle>arXiv.org</jtitle><date>2021-11-11</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We study approximation properties of multivariate periodic functions from weighted Wiener spaces by sparse grids methods constructed with the help of quasi-interpolation operators. The class of such operators includes classical interpolation and sampling operators, Kantorovich-type operators, scaling expansions associated with wavelet constructions, and others. We obtain the rate of convergence of the corresponding sparse grids methods in weighted Wiener norms as well as analogues of the Littlewood-Paley-type characterizations in terms of families of quasi-interpolation operators.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2596821129 |
source | Free E- Journals |
subjects | Approximation Interpolation Mathematical analysis Norms Operators Periodic functions |
title | Sparse grid approximation in weighted Wiener spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Sparse%20grid%20approximation%20in%20weighted%20Wiener%20spaces&rft.jtitle=arXiv.org&rft.au=Kolomoitsev,%20Yurii&rft.date=2021-11-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2596821129%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596821129&rft_id=info:pmid/&rfr_iscdi=true |