Sparse grid approximation in weighted Wiener spaces

We study approximation properties of multivariate periodic functions from weighted Wiener spaces by sparse grids methods constructed with the help of quasi-interpolation operators. The class of such operators includes classical interpolation and sampling operators, Kantorovich-type operators, scalin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-11
Hauptverfasser: Kolomoitsev, Yurii, Lomako, Tetiana, Tikhonov, Segey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kolomoitsev, Yurii
Lomako, Tetiana
Tikhonov, Segey
description We study approximation properties of multivariate periodic functions from weighted Wiener spaces by sparse grids methods constructed with the help of quasi-interpolation operators. The class of such operators includes classical interpolation and sampling operators, Kantorovich-type operators, scaling expansions associated with wavelet constructions, and others. We obtain the rate of convergence of the corresponding sparse grids methods in weighted Wiener norms as well as analogues of the Littlewood-Paley-type characterizations in terms of families of quasi-interpolation operators.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2596821129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596821129</sourcerecordid><originalsourceid>FETCH-proquest_journals_25968211293</originalsourceid><addsrcrecordid>eNqNi0EKwjAQAIMgWLR_CHguNBtT27Mo3hU8lmDXukWTmE3R59uDD_A0h5mZiQy0VkW9AViInHkoyxKqLRijM6FPwUZG2UfqpA0h-g89bSLvJDn5RurvCTt5IXQYJQd7RV6J-c0-GPMfl2J92J93x2K6XyNyagc_RjepFkxT1aAUNPq_6gs8DzSC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596821129</pqid></control><display><type>article</type><title>Sparse grid approximation in weighted Wiener spaces</title><source>Free E- Journals</source><creator>Kolomoitsev, Yurii ; Lomako, Tetiana ; Tikhonov, Segey</creator><creatorcontrib>Kolomoitsev, Yurii ; Lomako, Tetiana ; Tikhonov, Segey</creatorcontrib><description>We study approximation properties of multivariate periodic functions from weighted Wiener spaces by sparse grids methods constructed with the help of quasi-interpolation operators. The class of such operators includes classical interpolation and sampling operators, Kantorovich-type operators, scaling expansions associated with wavelet constructions, and others. We obtain the rate of convergence of the corresponding sparse grids methods in weighted Wiener norms as well as analogues of the Littlewood-Paley-type characterizations in terms of families of quasi-interpolation operators.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Interpolation ; Mathematical analysis ; Norms ; Operators ; Periodic functions</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kolomoitsev, Yurii</creatorcontrib><creatorcontrib>Lomako, Tetiana</creatorcontrib><creatorcontrib>Tikhonov, Segey</creatorcontrib><title>Sparse grid approximation in weighted Wiener spaces</title><title>arXiv.org</title><description>We study approximation properties of multivariate periodic functions from weighted Wiener spaces by sparse grids methods constructed with the help of quasi-interpolation operators. The class of such operators includes classical interpolation and sampling operators, Kantorovich-type operators, scaling expansions associated with wavelet constructions, and others. We obtain the rate of convergence of the corresponding sparse grids methods in weighted Wiener norms as well as analogues of the Littlewood-Paley-type characterizations in terms of families of quasi-interpolation operators.</description><subject>Approximation</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Norms</subject><subject>Operators</subject><subject>Periodic functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi0EKwjAQAIMgWLR_CHguNBtT27Mo3hU8lmDXukWTmE3R59uDD_A0h5mZiQy0VkW9AViInHkoyxKqLRijM6FPwUZG2UfqpA0h-g89bSLvJDn5RurvCTt5IXQYJQd7RV6J-c0-GPMfl2J92J93x2K6XyNyagc_RjepFkxT1aAUNPq_6gs8DzSC</recordid><startdate>20211111</startdate><enddate>20211111</enddate><creator>Kolomoitsev, Yurii</creator><creator>Lomako, Tetiana</creator><creator>Tikhonov, Segey</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211111</creationdate><title>Sparse grid approximation in weighted Wiener spaces</title><author>Kolomoitsev, Yurii ; Lomako, Tetiana ; Tikhonov, Segey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25968211293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Norms</topic><topic>Operators</topic><topic>Periodic functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Kolomoitsev, Yurii</creatorcontrib><creatorcontrib>Lomako, Tetiana</creatorcontrib><creatorcontrib>Tikhonov, Segey</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolomoitsev, Yurii</au><au>Lomako, Tetiana</au><au>Tikhonov, Segey</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Sparse grid approximation in weighted Wiener spaces</atitle><jtitle>arXiv.org</jtitle><date>2021-11-11</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We study approximation properties of multivariate periodic functions from weighted Wiener spaces by sparse grids methods constructed with the help of quasi-interpolation operators. The class of such operators includes classical interpolation and sampling operators, Kantorovich-type operators, scaling expansions associated with wavelet constructions, and others. We obtain the rate of convergence of the corresponding sparse grids methods in weighted Wiener norms as well as analogues of the Littlewood-Paley-type characterizations in terms of families of quasi-interpolation operators.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2596821129
source Free E- Journals
subjects Approximation
Interpolation
Mathematical analysis
Norms
Operators
Periodic functions
title Sparse grid approximation in weighted Wiener spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Sparse%20grid%20approximation%20in%20weighted%20Wiener%20spaces&rft.jtitle=arXiv.org&rft.au=Kolomoitsev,%20Yurii&rft.date=2021-11-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2596821129%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596821129&rft_id=info:pmid/&rfr_iscdi=true