Discovering and Explaining the Representation Bottleneck of DNNs
This paper explores the bottleneck of feature representations of deep neural networks (DNNs), from the perspective of the complexity of interactions between input variables encoded in DNNs. To this end, we focus on the multi-order interaction between input variables, where the order represents the c...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Deng, Huiqi Ren, Qihan Zhang, Hao Zhang, Quanshi |
description | This paper explores the bottleneck of feature representations of deep neural networks (DNNs), from the perspective of the complexity of interactions between input variables encoded in DNNs. To this end, we focus on the multi-order interaction between input variables, where the order represents the complexity of interactions. We discover that a DNN is more likely to encode both too simple interactions and too complex interactions, but usually fails to learn interactions of intermediate complexity. Such a phenomenon is widely shared by different DNNs for different tasks. This phenomenon indicates a cognition gap between DNNs and human beings, and we call it a representation bottleneck. We theoretically prove the underlying reason for the representation bottleneck. Furthermore, we propose a loss to encourage/penalize the learning of interactions of specific complexities, and analyze the representation capacities of interactions of different complexities. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2596814706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596814706</sourcerecordid><originalsourceid>FETCH-proquest_journals_25968147063</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgupEl_7kRbcdWFuC-hvmpqeal5qXh8FTyAq2GYmbFAKhVHRSLlgoVEvRBCZrlMUxWwbWmotU9wBq9c44VXr3HQBr_qb8BPMDogQK-9sch31vsBENo7tx0v65pWbN7pgSD8ccnWh-q8P0ajs48JyDe9nRx-UiPTTVbESS4y9d_1BkCHOQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596814706</pqid></control><display><type>article</type><title>Discovering and Explaining the Representation Bottleneck of DNNs</title><source>Free E- Journals</source><creator>Deng, Huiqi ; Ren, Qihan ; Zhang, Hao ; Zhang, Quanshi</creator><creatorcontrib>Deng, Huiqi ; Ren, Qihan ; Zhang, Hao ; Zhang, Quanshi</creatorcontrib><description>This paper explores the bottleneck of feature representations of deep neural networks (DNNs), from the perspective of the complexity of interactions between input variables encoded in DNNs. To this end, we focus on the multi-order interaction between input variables, where the order represents the complexity of interactions. We discover that a DNN is more likely to encode both too simple interactions and too complex interactions, but usually fails to learn interactions of intermediate complexity. Such a phenomenon is widely shared by different DNNs for different tasks. This phenomenon indicates a cognition gap between DNNs and human beings, and we call it a representation bottleneck. We theoretically prove the underlying reason for the representation bottleneck. Furthermore, we propose a loss to encourage/penalize the learning of interactions of specific complexities, and analyze the representation capacities of interactions of different complexities.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Cognition ; Complexity ; Machine learning ; Representations</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Deng, Huiqi</creatorcontrib><creatorcontrib>Ren, Qihan</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Zhang, Quanshi</creatorcontrib><title>Discovering and Explaining the Representation Bottleneck of DNNs</title><title>arXiv.org</title><description>This paper explores the bottleneck of feature representations of deep neural networks (DNNs), from the perspective of the complexity of interactions between input variables encoded in DNNs. To this end, we focus on the multi-order interaction between input variables, where the order represents the complexity of interactions. We discover that a DNN is more likely to encode both too simple interactions and too complex interactions, but usually fails to learn interactions of intermediate complexity. Such a phenomenon is widely shared by different DNNs for different tasks. This phenomenon indicates a cognition gap between DNNs and human beings, and we call it a representation bottleneck. We theoretically prove the underlying reason for the representation bottleneck. Furthermore, we propose a loss to encourage/penalize the learning of interactions of specific complexities, and analyze the representation capacities of interactions of different complexities.</description><subject>Artificial neural networks</subject><subject>Cognition</subject><subject>Complexity</subject><subject>Machine learning</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgupEl_7kRbcdWFuC-hvmpqeal5qXh8FTyAq2GYmbFAKhVHRSLlgoVEvRBCZrlMUxWwbWmotU9wBq9c44VXr3HQBr_qb8BPMDogQK-9sch31vsBENo7tx0v65pWbN7pgSD8ccnWh-q8P0ajs48JyDe9nRx-UiPTTVbESS4y9d_1BkCHOQs</recordid><startdate>20221107</startdate><enddate>20221107</enddate><creator>Deng, Huiqi</creator><creator>Ren, Qihan</creator><creator>Zhang, Hao</creator><creator>Zhang, Quanshi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221107</creationdate><title>Discovering and Explaining the Representation Bottleneck of DNNs</title><author>Deng, Huiqi ; Ren, Qihan ; Zhang, Hao ; Zhang, Quanshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25968147063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Cognition</topic><topic>Complexity</topic><topic>Machine learning</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Deng, Huiqi</creatorcontrib><creatorcontrib>Ren, Qihan</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Zhang, Quanshi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Huiqi</au><au>Ren, Qihan</au><au>Zhang, Hao</au><au>Zhang, Quanshi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Discovering and Explaining the Representation Bottleneck of DNNs</atitle><jtitle>arXiv.org</jtitle><date>2022-11-07</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>This paper explores the bottleneck of feature representations of deep neural networks (DNNs), from the perspective of the complexity of interactions between input variables encoded in DNNs. To this end, we focus on the multi-order interaction between input variables, where the order represents the complexity of interactions. We discover that a DNN is more likely to encode both too simple interactions and too complex interactions, but usually fails to learn interactions of intermediate complexity. Such a phenomenon is widely shared by different DNNs for different tasks. This phenomenon indicates a cognition gap between DNNs and human beings, and we call it a representation bottleneck. We theoretically prove the underlying reason for the representation bottleneck. Furthermore, we propose a loss to encourage/penalize the learning of interactions of specific complexities, and analyze the representation capacities of interactions of different complexities.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2596814706 |
source | Free E- Journals |
subjects | Artificial neural networks Cognition Complexity Machine learning Representations |
title | Discovering and Explaining the Representation Bottleneck of DNNs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Discovering%20and%20Explaining%20the%20Representation%20Bottleneck%20of%20DNNs&rft.jtitle=arXiv.org&rft.au=Deng,%20Huiqi&rft.date=2022-11-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2596814706%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596814706&rft_id=info:pmid/&rfr_iscdi=true |