Improved method for learning data imbalance in gender classification model using DA-FSL
As the deep learning technology grows, the accuracy of the training data to improve the model becomes important. If there are not enough learning data between classes, there is a problem that the accuracy of the deep learning model is greatly reduced. In this paper, we propose a method to solve data...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2021-11, Vol.80 (26-27), p.34403-34421 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34421 |
---|---|
container_issue | 26-27 |
container_start_page | 34403 |
container_title | Multimedia tools and applications |
container_volume | 80 |
creator | Lee, Jun-Mock Kang, Dae-seong |
description | As the deep learning technology grows, the accuracy of the training data to improve the model becomes important. If there are not enough learning data between classes, there is a problem that the accuracy of the deep learning model is greatly reduced. In this paper, we propose a method to solve data imbalance caused by the difficulty of collecting learning data through DA-FSL(Data Augmentation based Few-Shot Learning). The proposed method is to separate the class with the data imbalance and the normal class, and to re-learn by creating the data of the data imbalance class through DA-FSL. It adopts GAN(Generative Adversarial Network) architecture, then initialize through mapping network to improve the generation accuracy and speed of new latent vector. The purpose of this paper is to verify whether the data imbalance of gender classification model can be solved through the experiments applied by the proposed method and to prove its effectiveness. |
doi_str_mv | 10.1007/s11042-021-11309-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596814371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596814371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-9f2bd8a811a1f8991542ee45c778fc2c2ab15c66ec31704d4e4b01382ffde03f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRt8thMnY1UoIFViAMRoOf4oqRKn2CkV_x6XIrEx3Q3v857uQegS6DVQKm8SABWMUAYEgNOa7I7QBArJiZQMjvPOK0pkQeEUnaW0phTKgokJenvsN3H4dBb3bnwfLPZDxJ3TMbRhha0eNW77Rnc6GIfbgFcuWBex6XRKrW-NHtsh4H6wrsPbtGduZ2TxvDxHJ153yV38zil6Xdy9zB_I8un-cT5bEsMkHUntWWMrXQFo8FVdQyGYc6IwUlbeMMN0A4UpS2c4SCqscKKh-RfmvXWUez5FV4fe_MXH1qVRrYdtDPmkYkVdViC4hJxih5SJQ0rRebWJba_jlwKq9gLVQaDKAtWPQLXLED9AKYfDysW_6n-ob4BRc5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596814371</pqid></control><display><type>article</type><title>Improved method for learning data imbalance in gender classification model using DA-FSL</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Jun-Mock ; Kang, Dae-seong</creator><creatorcontrib>Lee, Jun-Mock ; Kang, Dae-seong</creatorcontrib><description>As the deep learning technology grows, the accuracy of the training data to improve the model becomes important. If there are not enough learning data between classes, there is a problem that the accuracy of the deep learning model is greatly reduced. In this paper, we propose a method to solve data imbalance caused by the difficulty of collecting learning data through DA-FSL(Data Augmentation based Few-Shot Learning). The proposed method is to separate the class with the data imbalance and the normal class, and to re-learn by creating the data of the data imbalance class through DA-FSL. It adopts GAN(Generative Adversarial Network) architecture, then initialize through mapping network to improve the generation accuracy and speed of new latent vector. The purpose of this paper is to verify whether the data imbalance of gender classification model can be solved through the experiments applied by the proposed method and to prove its effectiveness.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-021-11309-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>1135T: Social Multimedia Processing ; Accuracy ; Classification ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Deep learning ; Generative adversarial networks ; Machine learning ; Multimedia Information Systems ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2021-11, Vol.80 (26-27), p.34403-34421</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-9f2bd8a811a1f8991542ee45c778fc2c2ab15c66ec31704d4e4b01382ffde03f3</cites><orcidid>0000-0002-2454-0672 ; 0000-0003-0186-2430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-021-11309-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-021-11309-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lee, Jun-Mock</creatorcontrib><creatorcontrib>Kang, Dae-seong</creatorcontrib><title>Improved method for learning data imbalance in gender classification model using DA-FSL</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>As the deep learning technology grows, the accuracy of the training data to improve the model becomes important. If there are not enough learning data between classes, there is a problem that the accuracy of the deep learning model is greatly reduced. In this paper, we propose a method to solve data imbalance caused by the difficulty of collecting learning data through DA-FSL(Data Augmentation based Few-Shot Learning). The proposed method is to separate the class with the data imbalance and the normal class, and to re-learn by creating the data of the data imbalance class through DA-FSL. It adopts GAN(Generative Adversarial Network) architecture, then initialize through mapping network to improve the generation accuracy and speed of new latent vector. The purpose of this paper is to verify whether the data imbalance of gender classification model can be solved through the experiments applied by the proposed method and to prove its effectiveness.</description><subject>1135T: Social Multimedia Processing</subject><subject>Accuracy</subject><subject>Classification</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Generative adversarial networks</subject><subject>Machine learning</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRt8thMnY1UoIFViAMRoOf4oqRKn2CkV_x6XIrEx3Q3v857uQegS6DVQKm8SABWMUAYEgNOa7I7QBArJiZQMjvPOK0pkQeEUnaW0phTKgokJenvsN3H4dBb3bnwfLPZDxJ3TMbRhha0eNW77Rnc6GIfbgFcuWBex6XRKrW-NHtsh4H6wrsPbtGduZ2TxvDxHJ153yV38zil6Xdy9zB_I8un-cT5bEsMkHUntWWMrXQFo8FVdQyGYc6IwUlbeMMN0A4UpS2c4SCqscKKh-RfmvXWUez5FV4fe_MXH1qVRrYdtDPmkYkVdViC4hJxih5SJQ0rRebWJba_jlwKq9gLVQaDKAtWPQLXLED9AKYfDysW_6n-ob4BRc5A</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Lee, Jun-Mock</creator><creator>Kang, Dae-seong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2454-0672</orcidid><orcidid>https://orcid.org/0000-0003-0186-2430</orcidid></search><sort><creationdate>20211101</creationdate><title>Improved method for learning data imbalance in gender classification model using DA-FSL</title><author>Lee, Jun-Mock ; Kang, Dae-seong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-9f2bd8a811a1f8991542ee45c778fc2c2ab15c66ec31704d4e4b01382ffde03f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1135T: Social Multimedia Processing</topic><topic>Accuracy</topic><topic>Classification</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Generative adversarial networks</topic><topic>Machine learning</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jun-Mock</creatorcontrib><creatorcontrib>Kang, Dae-seong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jun-Mock</au><au>Kang, Dae-seong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved method for learning data imbalance in gender classification model using DA-FSL</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>80</volume><issue>26-27</issue><spage>34403</spage><epage>34421</epage><pages>34403-34421</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>As the deep learning technology grows, the accuracy of the training data to improve the model becomes important. If there are not enough learning data between classes, there is a problem that the accuracy of the deep learning model is greatly reduced. In this paper, we propose a method to solve data imbalance caused by the difficulty of collecting learning data through DA-FSL(Data Augmentation based Few-Shot Learning). The proposed method is to separate the class with the data imbalance and the normal class, and to re-learn by creating the data of the data imbalance class through DA-FSL. It adopts GAN(Generative Adversarial Network) architecture, then initialize through mapping network to improve the generation accuracy and speed of new latent vector. The purpose of this paper is to verify whether the data imbalance of gender classification model can be solved through the experiments applied by the proposed method and to prove its effectiveness.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-021-11309-w</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2454-0672</orcidid><orcidid>https://orcid.org/0000-0003-0186-2430</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2021-11, Vol.80 (26-27), p.34403-34421 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2596814371 |
source | SpringerLink Journals - AutoHoldings |
subjects | 1135T: Social Multimedia Processing Accuracy Classification Computer Communication Networks Computer Science Data Structures and Information Theory Deep learning Generative adversarial networks Machine learning Multimedia Information Systems Special Purpose and Application-Based Systems |
title | Improved method for learning data imbalance in gender classification model using DA-FSL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20method%20for%20learning%20data%20imbalance%20in%20gender%20classification%20model%20using%20DA-FSL&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Lee,%20Jun-Mock&rft.date=2021-11-01&rft.volume=80&rft.issue=26-27&rft.spage=34403&rft.epage=34421&rft.pages=34403-34421&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-021-11309-w&rft_dat=%3Cproquest_cross%3E2596814371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596814371&rft_id=info:pmid/&rfr_iscdi=true |