Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives

Key message We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events. The global crop productivity is facing unprecedented threats due to climate change as high temp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant cell reports 2021-12, Vol.40 (12), p.2247-2271
Hauptverfasser: Haider, Saqlain, Iqbal, Javed, Naseer, Sana, Yaseen, Tabassum, Shaukat, Muzaffar, Bibi, Haleema, Ahmad, Yumna, Daud, Hina, Abbasi, Nayyab Laiba, Mahmood, Tariq
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2271
container_issue 12
container_start_page 2247
container_title Plant cell reports
container_volume 40
creator Haider, Saqlain
Iqbal, Javed
Naseer, Sana
Yaseen, Tabassum
Shaukat, Muzaffar
Bibi, Haleema
Ahmad, Yumna
Daud, Hina
Abbasi, Nayyab Laiba
Mahmood, Tariq
description Key message We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events. The global crop productivity is facing unprecedented threats due to climate change as high temperature negatively influences plant growth and metabolism. Owing to their sessile nature, plants have developed complex signaling networks which enable them to perceive changes in ambient temperature. This in turn activates a suite of molecular changes that promote plant survival and reproduction under adverse conditions. Deciphering these mechanisms is an important task, as this could facilitate development of molecular markers, which could be ultimately used to breed thermotolerant crop cultivars. In current article, we summarize mechanisms involve in plant heat stress acclimation with special emphasis on advances related to heat stress perception, heat-induced signaling, heat stress-responsive gene expression and thermomemory that promote plant adaptation to short- and long-term-recurring heat-stress events. In the end, we will discuss impact of emerging technologies that could facilitate the development of heat stress-tolerant crop cultivars.
doi_str_mv 10.1007/s00299-021-02696-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596813982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596813982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-7c6adb089814e47f1e9e64e7ebd2d932d387c0c3e8eb0a954d587f405d3577643</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMozjj6Ai4k4LqaW5vEnYg3GHGj4C6k6akzQ28mqeDbG-2oOxchB_7v_Ac-hI4pOaOEyPNACNM6I4ymV-gi4ztoTgVnGSP8ZRfNiUyRlFTM0EEIG0JSKIt9NONcaUK5miP70DfgxsZ63IJb2W4d2oD7Gg-N7SKOKfW2c5AmvAIbcYgeQrjAbvQeEpGwKjg7AE4Drsc4esAD-DCAi-t3CIdor7ZNgKPtv0DPN9dPV3fZ8vH2_upymTkhaMykK2xVEqUVFSBkTUFDIUBCWbFKc1ZxJR1xHBSUxOpcVLmStSB5xXMpC8EX6HTqHXz_NkKIZtOPvksnDct1oSjXiiWKTZTzfQgeajP4dWv9h6HEfFk1k1WTrJpvq4anpZNt9Vi2UP2u_GhMAJ-AkKLuFfzf7X9qPwFzlYOa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596813982</pqid></control><display><type>article</type><title>Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Haider, Saqlain ; Iqbal, Javed ; Naseer, Sana ; Yaseen, Tabassum ; Shaukat, Muzaffar ; Bibi, Haleema ; Ahmad, Yumna ; Daud, Hina ; Abbasi, Nayyab Laiba ; Mahmood, Tariq</creator><creatorcontrib>Haider, Saqlain ; Iqbal, Javed ; Naseer, Sana ; Yaseen, Tabassum ; Shaukat, Muzaffar ; Bibi, Haleema ; Ahmad, Yumna ; Daud, Hina ; Abbasi, Nayyab Laiba ; Mahmood, Tariq</creatorcontrib><description>Key message We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events. The global crop productivity is facing unprecedented threats due to climate change as high temperature negatively influences plant growth and metabolism. Owing to their sessile nature, plants have developed complex signaling networks which enable them to perceive changes in ambient temperature. This in turn activates a suite of molecular changes that promote plant survival and reproduction under adverse conditions. Deciphering these mechanisms is an important task, as this could facilitate development of molecular markers, which could be ultimately used to breed thermotolerant crop cultivars. In current article, we summarize mechanisms involve in plant heat stress acclimation with special emphasis on advances related to heat stress perception, heat-induced signaling, heat stress-responsive gene expression and thermomemory that promote plant adaptation to short- and long-term-recurring heat-stress events. In the end, we will discuss impact of emerging technologies that could facilitate the development of heat stress-tolerant crop cultivars.</description><identifier>ISSN: 0721-7714</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-021-02696-3</identifier><identifier>PMID: 33890138</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acclimation ; Acclimatization ; Adaptation ; Ambient temperature ; Biomedical and Life Sciences ; Biotechnology ; Calcium Signaling ; Cell Biology ; Chromatin - genetics ; Chromatin - metabolism ; Climate change ; Crop production ; Crops ; Crops, Agricultural ; Cultivars ; Deciphering the Drought and Thermo-tolerance Mechanisms in Plants: The Road Ahead of Future Research ; Epigenesis, Genetic ; Gene expression ; Heat ; Heat stress ; Heat tolerance ; Heat-Shock Response - physiology ; High temperature ; Life Sciences ; Lipid Metabolism ; Molecular modelling ; New technology ; Plant Biochemistry ; Plant Breeding ; Plant growth ; Plant Physiological Phenomena ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Review ; RNA, Plant - genetics ; RNA, Plant - metabolism ; Signaling ; Temperature perception ; Temperature tolerance ; Thermotolerance - physiology</subject><ispartof>Plant cell reports, 2021-12, Vol.40 (12), p.2247-2271</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-7c6adb089814e47f1e9e64e7ebd2d932d387c0c3e8eb0a954d587f405d3577643</citedby><cites>FETCH-LOGICAL-c441t-7c6adb089814e47f1e9e64e7ebd2d932d387c0c3e8eb0a954d587f405d3577643</cites><orcidid>0000-0002-9032-2622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00299-021-02696-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00299-021-02696-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33890138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haider, Saqlain</creatorcontrib><creatorcontrib>Iqbal, Javed</creatorcontrib><creatorcontrib>Naseer, Sana</creatorcontrib><creatorcontrib>Yaseen, Tabassum</creatorcontrib><creatorcontrib>Shaukat, Muzaffar</creatorcontrib><creatorcontrib>Bibi, Haleema</creatorcontrib><creatorcontrib>Ahmad, Yumna</creatorcontrib><creatorcontrib>Daud, Hina</creatorcontrib><creatorcontrib>Abbasi, Nayyab Laiba</creatorcontrib><creatorcontrib>Mahmood, Tariq</creatorcontrib><title>Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><addtitle>Plant Cell Rep</addtitle><description>Key message We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events. The global crop productivity is facing unprecedented threats due to climate change as high temperature negatively influences plant growth and metabolism. Owing to their sessile nature, plants have developed complex signaling networks which enable them to perceive changes in ambient temperature. This in turn activates a suite of molecular changes that promote plant survival and reproduction under adverse conditions. Deciphering these mechanisms is an important task, as this could facilitate development of molecular markers, which could be ultimately used to breed thermotolerant crop cultivars. In current article, we summarize mechanisms involve in plant heat stress acclimation with special emphasis on advances related to heat stress perception, heat-induced signaling, heat stress-responsive gene expression and thermomemory that promote plant adaptation to short- and long-term-recurring heat-stress events. In the end, we will discuss impact of emerging technologies that could facilitate the development of heat stress-tolerant crop cultivars.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Adaptation</subject><subject>Ambient temperature</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Calcium Signaling</subject><subject>Cell Biology</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Climate change</subject><subject>Crop production</subject><subject>Crops</subject><subject>Crops, Agricultural</subject><subject>Cultivars</subject><subject>Deciphering the Drought and Thermo-tolerance Mechanisms in Plants: The Road Ahead of Future Research</subject><subject>Epigenesis, Genetic</subject><subject>Gene expression</subject><subject>Heat</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>Heat-Shock Response - physiology</subject><subject>High temperature</subject><subject>Life Sciences</subject><subject>Lipid Metabolism</subject><subject>Molecular modelling</subject><subject>New technology</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant growth</subject><subject>Plant Physiological Phenomena</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Review</subject><subject>RNA, Plant - genetics</subject><subject>RNA, Plant - metabolism</subject><subject>Signaling</subject><subject>Temperature perception</subject><subject>Temperature tolerance</subject><subject>Thermotolerance - physiology</subject><issn>0721-7714</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMtKxDAUhoMozjj6Ai4k4LqaW5vEnYg3GHGj4C6k6akzQ28mqeDbG-2oOxchB_7v_Ac-hI4pOaOEyPNACNM6I4ymV-gi4ztoTgVnGSP8ZRfNiUyRlFTM0EEIG0JSKIt9NONcaUK5miP70DfgxsZ63IJb2W4d2oD7Gg-N7SKOKfW2c5AmvAIbcYgeQrjAbvQeEpGwKjg7AE4Drsc4esAD-DCAi-t3CIdor7ZNgKPtv0DPN9dPV3fZ8vH2_upymTkhaMykK2xVEqUVFSBkTUFDIUBCWbFKc1ZxJR1xHBSUxOpcVLmStSB5xXMpC8EX6HTqHXz_NkKIZtOPvksnDct1oSjXiiWKTZTzfQgeajP4dWv9h6HEfFk1k1WTrJpvq4anpZNt9Vi2UP2u_GhMAJ-AkKLuFfzf7X9qPwFzlYOa</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Haider, Saqlain</creator><creator>Iqbal, Javed</creator><creator>Naseer, Sana</creator><creator>Yaseen, Tabassum</creator><creator>Shaukat, Muzaffar</creator><creator>Bibi, Haleema</creator><creator>Ahmad, Yumna</creator><creator>Daud, Hina</creator><creator>Abbasi, Nayyab Laiba</creator><creator>Mahmood, Tariq</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-9032-2622</orcidid></search><sort><creationdate>20211201</creationdate><title>Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives</title><author>Haider, Saqlain ; Iqbal, Javed ; Naseer, Sana ; Yaseen, Tabassum ; Shaukat, Muzaffar ; Bibi, Haleema ; Ahmad, Yumna ; Daud, Hina ; Abbasi, Nayyab Laiba ; Mahmood, Tariq</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-7c6adb089814e47f1e9e64e7ebd2d932d387c0c3e8eb0a954d587f405d3577643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Adaptation</topic><topic>Ambient temperature</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Calcium Signaling</topic><topic>Cell Biology</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Climate change</topic><topic>Crop production</topic><topic>Crops</topic><topic>Crops, Agricultural</topic><topic>Cultivars</topic><topic>Deciphering the Drought and Thermo-tolerance Mechanisms in Plants: The Road Ahead of Future Research</topic><topic>Epigenesis, Genetic</topic><topic>Gene expression</topic><topic>Heat</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>Heat-Shock Response - physiology</topic><topic>High temperature</topic><topic>Life Sciences</topic><topic>Lipid Metabolism</topic><topic>Molecular modelling</topic><topic>New technology</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant growth</topic><topic>Plant Physiological Phenomena</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Review</topic><topic>RNA, Plant - genetics</topic><topic>RNA, Plant - metabolism</topic><topic>Signaling</topic><topic>Temperature perception</topic><topic>Temperature tolerance</topic><topic>Thermotolerance - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haider, Saqlain</creatorcontrib><creatorcontrib>Iqbal, Javed</creatorcontrib><creatorcontrib>Naseer, Sana</creatorcontrib><creatorcontrib>Yaseen, Tabassum</creatorcontrib><creatorcontrib>Shaukat, Muzaffar</creatorcontrib><creatorcontrib>Bibi, Haleema</creatorcontrib><creatorcontrib>Ahmad, Yumna</creatorcontrib><creatorcontrib>Daud, Hina</creatorcontrib><creatorcontrib>Abbasi, Nayyab Laiba</creatorcontrib><creatorcontrib>Mahmood, Tariq</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haider, Saqlain</au><au>Iqbal, Javed</au><au>Naseer, Sana</au><au>Yaseen, Tabassum</au><au>Shaukat, Muzaffar</au><au>Bibi, Haleema</au><au>Ahmad, Yumna</au><au>Daud, Hina</au><au>Abbasi, Nayyab Laiba</au><au>Mahmood, Tariq</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><addtitle>Plant Cell Rep</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>40</volume><issue>12</issue><spage>2247</spage><epage>2271</epage><pages>2247-2271</pages><issn>0721-7714</issn><eissn>1432-203X</eissn><abstract>Key message We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events. The global crop productivity is facing unprecedented threats due to climate change as high temperature negatively influences plant growth and metabolism. Owing to their sessile nature, plants have developed complex signaling networks which enable them to perceive changes in ambient temperature. This in turn activates a suite of molecular changes that promote plant survival and reproduction under adverse conditions. Deciphering these mechanisms is an important task, as this could facilitate development of molecular markers, which could be ultimately used to breed thermotolerant crop cultivars. In current article, we summarize mechanisms involve in plant heat stress acclimation with special emphasis on advances related to heat stress perception, heat-induced signaling, heat stress-responsive gene expression and thermomemory that promote plant adaptation to short- and long-term-recurring heat-stress events. In the end, we will discuss impact of emerging technologies that could facilitate the development of heat stress-tolerant crop cultivars.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33890138</pmid><doi>10.1007/s00299-021-02696-3</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-9032-2622</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0721-7714
ispartof Plant cell reports, 2021-12, Vol.40 (12), p.2247-2271
issn 0721-7714
1432-203X
language eng
recordid cdi_proquest_journals_2596813982
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Acclimation
Acclimatization
Adaptation
Ambient temperature
Biomedical and Life Sciences
Biotechnology
Calcium Signaling
Cell Biology
Chromatin - genetics
Chromatin - metabolism
Climate change
Crop production
Crops
Crops, Agricultural
Cultivars
Deciphering the Drought and Thermo-tolerance Mechanisms in Plants: The Road Ahead of Future Research
Epigenesis, Genetic
Gene expression
Heat
Heat stress
Heat tolerance
Heat-Shock Response - physiology
High temperature
Life Sciences
Lipid Metabolism
Molecular modelling
New technology
Plant Biochemistry
Plant Breeding
Plant growth
Plant Physiological Phenomena
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Sciences
Review
RNA, Plant - genetics
RNA, Plant - metabolism
Signaling
Temperature perception
Temperature tolerance
Thermotolerance - physiology
title Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanisms%20of%20plant%20tolerance%20to%20heat%20stress:%20current%20landscape%20and%20future%20perspectives&rft.jtitle=Plant%20cell%20reports&rft.au=Haider,%20Saqlain&rft.date=2021-12-01&rft.volume=40&rft.issue=12&rft.spage=2247&rft.epage=2271&rft.pages=2247-2271&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-021-02696-3&rft_dat=%3Cproquest_cross%3E2596813982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596813982&rft_id=info:pmid/33890138&rfr_iscdi=true