Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives
Key message We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events. The global crop productivity is facing unprecedented threats due to climate change as high temp...
Gespeichert in:
Veröffentlicht in: | Plant cell reports 2021-12, Vol.40 (12), p.2247-2271 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2271 |
---|---|
container_issue | 12 |
container_start_page | 2247 |
container_title | Plant cell reports |
container_volume | 40 |
creator | Haider, Saqlain Iqbal, Javed Naseer, Sana Yaseen, Tabassum Shaukat, Muzaffar Bibi, Haleema Ahmad, Yumna Daud, Hina Abbasi, Nayyab Laiba Mahmood, Tariq |
description | Key message
We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events.
The global crop productivity is facing unprecedented threats due to climate change as high temperature negatively influences plant growth and metabolism. Owing to their sessile nature, plants have developed complex signaling networks which enable them to perceive changes in ambient temperature. This in turn activates a suite of molecular changes that promote plant survival and reproduction under adverse conditions. Deciphering these mechanisms is an important task, as this could facilitate development of molecular markers, which could be ultimately used to breed thermotolerant crop cultivars. In current article, we summarize mechanisms involve in plant heat stress acclimation with special emphasis on advances related to heat stress perception, heat-induced signaling, heat stress-responsive gene expression and thermomemory that promote plant adaptation to short- and long-term-recurring heat-stress events. In the end, we will discuss impact of emerging technologies that could facilitate the development of heat stress-tolerant crop cultivars. |
doi_str_mv | 10.1007/s00299-021-02696-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596813982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596813982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-7c6adb089814e47f1e9e64e7ebd2d932d387c0c3e8eb0a954d587f405d3577643</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMozjj6Ai4k4LqaW5vEnYg3GHGj4C6k6akzQ28mqeDbG-2oOxchB_7v_Ac-hI4pOaOEyPNACNM6I4ymV-gi4ztoTgVnGSP8ZRfNiUyRlFTM0EEIG0JSKIt9NONcaUK5miP70DfgxsZ63IJb2W4d2oD7Gg-N7SKOKfW2c5AmvAIbcYgeQrjAbvQeEpGwKjg7AE4Drsc4esAD-DCAi-t3CIdor7ZNgKPtv0DPN9dPV3fZ8vH2_upymTkhaMykK2xVEqUVFSBkTUFDIUBCWbFKc1ZxJR1xHBSUxOpcVLmStSB5xXMpC8EX6HTqHXz_NkKIZtOPvksnDct1oSjXiiWKTZTzfQgeajP4dWv9h6HEfFk1k1WTrJpvq4anpZNt9Vi2UP2u_GhMAJ-AkKLuFfzf7X9qPwFzlYOa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596813982</pqid></control><display><type>article</type><title>Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Haider, Saqlain ; Iqbal, Javed ; Naseer, Sana ; Yaseen, Tabassum ; Shaukat, Muzaffar ; Bibi, Haleema ; Ahmad, Yumna ; Daud, Hina ; Abbasi, Nayyab Laiba ; Mahmood, Tariq</creator><creatorcontrib>Haider, Saqlain ; Iqbal, Javed ; Naseer, Sana ; Yaseen, Tabassum ; Shaukat, Muzaffar ; Bibi, Haleema ; Ahmad, Yumna ; Daud, Hina ; Abbasi, Nayyab Laiba ; Mahmood, Tariq</creatorcontrib><description>Key message
We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events.
The global crop productivity is facing unprecedented threats due to climate change as high temperature negatively influences plant growth and metabolism. Owing to their sessile nature, plants have developed complex signaling networks which enable them to perceive changes in ambient temperature. This in turn activates a suite of molecular changes that promote plant survival and reproduction under adverse conditions. Deciphering these mechanisms is an important task, as this could facilitate development of molecular markers, which could be ultimately used to breed thermotolerant crop cultivars. In current article, we summarize mechanisms involve in plant heat stress acclimation with special emphasis on advances related to heat stress perception, heat-induced signaling, heat stress-responsive gene expression and thermomemory that promote plant adaptation to short- and long-term-recurring heat-stress events. In the end, we will discuss impact of emerging technologies that could facilitate the development of heat stress-tolerant crop cultivars.</description><identifier>ISSN: 0721-7714</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-021-02696-3</identifier><identifier>PMID: 33890138</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acclimation ; Acclimatization ; Adaptation ; Ambient temperature ; Biomedical and Life Sciences ; Biotechnology ; Calcium Signaling ; Cell Biology ; Chromatin - genetics ; Chromatin - metabolism ; Climate change ; Crop production ; Crops ; Crops, Agricultural ; Cultivars ; Deciphering the Drought and Thermo-tolerance Mechanisms in Plants: The Road Ahead of Future Research ; Epigenesis, Genetic ; Gene expression ; Heat ; Heat stress ; Heat tolerance ; Heat-Shock Response - physiology ; High temperature ; Life Sciences ; Lipid Metabolism ; Molecular modelling ; New technology ; Plant Biochemistry ; Plant Breeding ; Plant growth ; Plant Physiological Phenomena ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Review ; RNA, Plant - genetics ; RNA, Plant - metabolism ; Signaling ; Temperature perception ; Temperature tolerance ; Thermotolerance - physiology</subject><ispartof>Plant cell reports, 2021-12, Vol.40 (12), p.2247-2271</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-7c6adb089814e47f1e9e64e7ebd2d932d387c0c3e8eb0a954d587f405d3577643</citedby><cites>FETCH-LOGICAL-c441t-7c6adb089814e47f1e9e64e7ebd2d932d387c0c3e8eb0a954d587f405d3577643</cites><orcidid>0000-0002-9032-2622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00299-021-02696-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00299-021-02696-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33890138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haider, Saqlain</creatorcontrib><creatorcontrib>Iqbal, Javed</creatorcontrib><creatorcontrib>Naseer, Sana</creatorcontrib><creatorcontrib>Yaseen, Tabassum</creatorcontrib><creatorcontrib>Shaukat, Muzaffar</creatorcontrib><creatorcontrib>Bibi, Haleema</creatorcontrib><creatorcontrib>Ahmad, Yumna</creatorcontrib><creatorcontrib>Daud, Hina</creatorcontrib><creatorcontrib>Abbasi, Nayyab Laiba</creatorcontrib><creatorcontrib>Mahmood, Tariq</creatorcontrib><title>Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><addtitle>Plant Cell Rep</addtitle><description>Key message
We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events.
The global crop productivity is facing unprecedented threats due to climate change as high temperature negatively influences plant growth and metabolism. Owing to their sessile nature, plants have developed complex signaling networks which enable them to perceive changes in ambient temperature. This in turn activates a suite of molecular changes that promote plant survival and reproduction under adverse conditions. Deciphering these mechanisms is an important task, as this could facilitate development of molecular markers, which could be ultimately used to breed thermotolerant crop cultivars. In current article, we summarize mechanisms involve in plant heat stress acclimation with special emphasis on advances related to heat stress perception, heat-induced signaling, heat stress-responsive gene expression and thermomemory that promote plant adaptation to short- and long-term-recurring heat-stress events. In the end, we will discuss impact of emerging technologies that could facilitate the development of heat stress-tolerant crop cultivars.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Adaptation</subject><subject>Ambient temperature</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Calcium Signaling</subject><subject>Cell Biology</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Climate change</subject><subject>Crop production</subject><subject>Crops</subject><subject>Crops, Agricultural</subject><subject>Cultivars</subject><subject>Deciphering the Drought and Thermo-tolerance Mechanisms in Plants: The Road Ahead of Future Research</subject><subject>Epigenesis, Genetic</subject><subject>Gene expression</subject><subject>Heat</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>Heat-Shock Response - physiology</subject><subject>High temperature</subject><subject>Life Sciences</subject><subject>Lipid Metabolism</subject><subject>Molecular modelling</subject><subject>New technology</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant growth</subject><subject>Plant Physiological Phenomena</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Review</subject><subject>RNA, Plant - genetics</subject><subject>RNA, Plant - metabolism</subject><subject>Signaling</subject><subject>Temperature perception</subject><subject>Temperature tolerance</subject><subject>Thermotolerance - physiology</subject><issn>0721-7714</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMtKxDAUhoMozjj6Ai4k4LqaW5vEnYg3GHGj4C6k6akzQ28mqeDbG-2oOxchB_7v_Ac-hI4pOaOEyPNACNM6I4ymV-gi4ztoTgVnGSP8ZRfNiUyRlFTM0EEIG0JSKIt9NONcaUK5miP70DfgxsZ63IJb2W4d2oD7Gg-N7SKOKfW2c5AmvAIbcYgeQrjAbvQeEpGwKjg7AE4Drsc4esAD-DCAi-t3CIdor7ZNgKPtv0DPN9dPV3fZ8vH2_upymTkhaMykK2xVEqUVFSBkTUFDIUBCWbFKc1ZxJR1xHBSUxOpcVLmStSB5xXMpC8EX6HTqHXz_NkKIZtOPvksnDct1oSjXiiWKTZTzfQgeajP4dWv9h6HEfFk1k1WTrJpvq4anpZNt9Vi2UP2u_GhMAJ-AkKLuFfzf7X9qPwFzlYOa</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Haider, Saqlain</creator><creator>Iqbal, Javed</creator><creator>Naseer, Sana</creator><creator>Yaseen, Tabassum</creator><creator>Shaukat, Muzaffar</creator><creator>Bibi, Haleema</creator><creator>Ahmad, Yumna</creator><creator>Daud, Hina</creator><creator>Abbasi, Nayyab Laiba</creator><creator>Mahmood, Tariq</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-9032-2622</orcidid></search><sort><creationdate>20211201</creationdate><title>Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives</title><author>Haider, Saqlain ; Iqbal, Javed ; Naseer, Sana ; Yaseen, Tabassum ; Shaukat, Muzaffar ; Bibi, Haleema ; Ahmad, Yumna ; Daud, Hina ; Abbasi, Nayyab Laiba ; Mahmood, Tariq</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-7c6adb089814e47f1e9e64e7ebd2d932d387c0c3e8eb0a954d587f405d3577643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Adaptation</topic><topic>Ambient temperature</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Calcium Signaling</topic><topic>Cell Biology</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Climate change</topic><topic>Crop production</topic><topic>Crops</topic><topic>Crops, Agricultural</topic><topic>Cultivars</topic><topic>Deciphering the Drought and Thermo-tolerance Mechanisms in Plants: The Road Ahead of Future Research</topic><topic>Epigenesis, Genetic</topic><topic>Gene expression</topic><topic>Heat</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>Heat-Shock Response - physiology</topic><topic>High temperature</topic><topic>Life Sciences</topic><topic>Lipid Metabolism</topic><topic>Molecular modelling</topic><topic>New technology</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant growth</topic><topic>Plant Physiological Phenomena</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Review</topic><topic>RNA, Plant - genetics</topic><topic>RNA, Plant - metabolism</topic><topic>Signaling</topic><topic>Temperature perception</topic><topic>Temperature tolerance</topic><topic>Thermotolerance - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haider, Saqlain</creatorcontrib><creatorcontrib>Iqbal, Javed</creatorcontrib><creatorcontrib>Naseer, Sana</creatorcontrib><creatorcontrib>Yaseen, Tabassum</creatorcontrib><creatorcontrib>Shaukat, Muzaffar</creatorcontrib><creatorcontrib>Bibi, Haleema</creatorcontrib><creatorcontrib>Ahmad, Yumna</creatorcontrib><creatorcontrib>Daud, Hina</creatorcontrib><creatorcontrib>Abbasi, Nayyab Laiba</creatorcontrib><creatorcontrib>Mahmood, Tariq</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haider, Saqlain</au><au>Iqbal, Javed</au><au>Naseer, Sana</au><au>Yaseen, Tabassum</au><au>Shaukat, Muzaffar</au><au>Bibi, Haleema</au><au>Ahmad, Yumna</au><au>Daud, Hina</au><au>Abbasi, Nayyab Laiba</au><au>Mahmood, Tariq</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><addtitle>Plant Cell Rep</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>40</volume><issue>12</issue><spage>2247</spage><epage>2271</epage><pages>2247-2271</pages><issn>0721-7714</issn><eissn>1432-203X</eissn><abstract>Key message
We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events.
The global crop productivity is facing unprecedented threats due to climate change as high temperature negatively influences plant growth and metabolism. Owing to their sessile nature, plants have developed complex signaling networks which enable them to perceive changes in ambient temperature. This in turn activates a suite of molecular changes that promote plant survival and reproduction under adverse conditions. Deciphering these mechanisms is an important task, as this could facilitate development of molecular markers, which could be ultimately used to breed thermotolerant crop cultivars. In current article, we summarize mechanisms involve in plant heat stress acclimation with special emphasis on advances related to heat stress perception, heat-induced signaling, heat stress-responsive gene expression and thermomemory that promote plant adaptation to short- and long-term-recurring heat-stress events. In the end, we will discuss impact of emerging technologies that could facilitate the development of heat stress-tolerant crop cultivars.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33890138</pmid><doi>10.1007/s00299-021-02696-3</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-9032-2622</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0721-7714 |
ispartof | Plant cell reports, 2021-12, Vol.40 (12), p.2247-2271 |
issn | 0721-7714 1432-203X |
language | eng |
recordid | cdi_proquest_journals_2596813982 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Acclimation Acclimatization Adaptation Ambient temperature Biomedical and Life Sciences Biotechnology Calcium Signaling Cell Biology Chromatin - genetics Chromatin - metabolism Climate change Crop production Crops Crops, Agricultural Cultivars Deciphering the Drought and Thermo-tolerance Mechanisms in Plants: The Road Ahead of Future Research Epigenesis, Genetic Gene expression Heat Heat stress Heat tolerance Heat-Shock Response - physiology High temperature Life Sciences Lipid Metabolism Molecular modelling New technology Plant Biochemistry Plant Breeding Plant growth Plant Physiological Phenomena Plant Proteins - genetics Plant Proteins - metabolism Plant Sciences Review RNA, Plant - genetics RNA, Plant - metabolism Signaling Temperature perception Temperature tolerance Thermotolerance - physiology |
title | Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanisms%20of%20plant%20tolerance%20to%20heat%20stress:%20current%20landscape%20and%20future%20perspectives&rft.jtitle=Plant%20cell%20reports&rft.au=Haider,%20Saqlain&rft.date=2021-12-01&rft.volume=40&rft.issue=12&rft.spage=2247&rft.epage=2271&rft.pages=2247-2271&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-021-02696-3&rft_dat=%3Cproquest_cross%3E2596813982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596813982&rft_id=info:pmid/33890138&rfr_iscdi=true |