Nonlinear flight physics of the Lie Bracket roll mechanism
In this paper, we review the concept of Lie brackets and how it can be exploited in generating motion in unactuated directions through nonlinear interactions between two or more control inputs. Applying this technique to the airplane flight dynamics near stall, a new rolling mechanism is discovered...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2021-11, Vol.106 (3), p.1627-1646 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1646 |
---|---|
container_issue | 3 |
container_start_page | 1627 |
container_title | Nonlinear dynamics |
container_volume | 106 |
creator | Taha, Haithem E. Hassan, Ahmed Fouda, Moatasem |
description | In this paper, we review the concept of Lie brackets and how it can be exploited in generating motion in unactuated directions through nonlinear interactions between two or more control inputs. Applying this technique to the airplane flight dynamics near stall, a new rolling mechanism is discovered through nonlinear interactions between the elevator and the aileron control inputs. This mechanism, referred to as the Lie Bracket Roll Augmentation (LIBRA) mechanism, possesses a significantly higher roll control authority near stall compared to the conventional roll mechanism using ailerons only; it produces more than an order-of-magnitude stronger roll motion over the first second. The main contribution of this paper is to study the nonlinear flight physics that lead to this superior performance of the LIBRA mechanism. In fact, the LIBRA performance in free flight (six DOF) is double that in a confined environment of two-DOF roll-pitch dynamics. The natural feedback from the airplane motion (roll, yaw, and sideslip) into the LIBRA mechanism boosts its performance through interesting nonlinear interplay between roll and yaw, while exploiting some of the changes in the airplane characteristics near stall. |
doi_str_mv | 10.1007/s11071-021-06940-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596811824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596811824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-fee66c954a8d559ff34cee516b8cf44df83704e6c12001da6d1872c714690af43</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gsMRvesx0nZoOKL6mCBaRulnHsJiVNip0O7a8nECQ2hqe73HOfdAg5R7hEgPwqIUKODPhwSktg-wMywSwXjCu9OCQT0Fwy0LA4JicprQBAcCgm5Pq5a5u69TbS0NTLqqebapdql2gXaF95Oq89vY3Wffiexq5p6Nq7yrZ1Wp-So2Cb5M9-c0re7u9eZ49s_vLwNLuZMyeU6FnwXimnM2mLMst0CEI67zNU74ULUpahEDlIrxxyACytKrHIuctRKg02SDElF-PuJnafW596s-q2sR1eGp5pVSAW_LvFx5aLXUrRB7OJ9drGnUEw347M6MgMjsyPI7MfIDFCaSi3Sx__pv-hvgA-y2ln</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596811824</pqid></control><display><type>article</type><title>Nonlinear flight physics of the Lie Bracket roll mechanism</title><source>SpringerLink Journals - AutoHoldings</source><creator>Taha, Haithem E. ; Hassan, Ahmed ; Fouda, Moatasem</creator><creatorcontrib>Taha, Haithem E. ; Hassan, Ahmed ; Fouda, Moatasem</creatorcontrib><description>In this paper, we review the concept of Lie brackets and how it can be exploited in generating motion in unactuated directions through nonlinear interactions between two or more control inputs. Applying this technique to the airplane flight dynamics near stall, a new rolling mechanism is discovered through nonlinear interactions between the elevator and the aileron control inputs. This mechanism, referred to as the Lie Bracket Roll Augmentation (LIBRA) mechanism, possesses a significantly higher roll control authority near stall compared to the conventional roll mechanism using ailerons only; it produces more than an order-of-magnitude stronger roll motion over the first second. The main contribution of this paper is to study the nonlinear flight physics that lead to this superior performance of the LIBRA mechanism. In fact, the LIBRA performance in free flight (six DOF) is double that in a confined environment of two-DOF roll-pitch dynamics. The natural feedback from the airplane motion (roll, yaw, and sideslip) into the LIBRA mechanism boosts its performance through interesting nonlinear interplay between roll and yaw, while exploiting some of the changes in the airplane characteristics near stall.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-06940-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Ailerons ; Automotive Engineering ; Brackets ; Classical Mechanics ; Confined spaces ; Control ; Control theory ; Dynamical Systems ; Elevators (control surfaces) ; Engineering ; Free flight ; Lateral control ; Mechanical Engineering ; Motion control ; Original Paper ; Physics ; Pitch (inclination) ; Roll ; Rolling motion ; Sideslip ; Stalling ; Vibration ; Yaw</subject><ispartof>Nonlinear dynamics, 2021-11, Vol.106 (3), p.1627-1646</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-fee66c954a8d559ff34cee516b8cf44df83704e6c12001da6d1872c714690af43</citedby><cites>FETCH-LOGICAL-c363t-fee66c954a8d559ff34cee516b8cf44df83704e6c12001da6d1872c714690af43</cites><orcidid>0000-0002-9242-2045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-06940-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-06940-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Taha, Haithem E.</creatorcontrib><creatorcontrib>Hassan, Ahmed</creatorcontrib><creatorcontrib>Fouda, Moatasem</creatorcontrib><title>Nonlinear flight physics of the Lie Bracket roll mechanism</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, we review the concept of Lie brackets and how it can be exploited in generating motion in unactuated directions through nonlinear interactions between two or more control inputs. Applying this technique to the airplane flight dynamics near stall, a new rolling mechanism is discovered through nonlinear interactions between the elevator and the aileron control inputs. This mechanism, referred to as the Lie Bracket Roll Augmentation (LIBRA) mechanism, possesses a significantly higher roll control authority near stall compared to the conventional roll mechanism using ailerons only; it produces more than an order-of-magnitude stronger roll motion over the first second. The main contribution of this paper is to study the nonlinear flight physics that lead to this superior performance of the LIBRA mechanism. In fact, the LIBRA performance in free flight (six DOF) is double that in a confined environment of two-DOF roll-pitch dynamics. The natural feedback from the airplane motion (roll, yaw, and sideslip) into the LIBRA mechanism boosts its performance through interesting nonlinear interplay between roll and yaw, while exploiting some of the changes in the airplane characteristics near stall.</description><subject>Ailerons</subject><subject>Automotive Engineering</subject><subject>Brackets</subject><subject>Classical Mechanics</subject><subject>Confined spaces</subject><subject>Control</subject><subject>Control theory</subject><subject>Dynamical Systems</subject><subject>Elevators (control surfaces)</subject><subject>Engineering</subject><subject>Free flight</subject><subject>Lateral control</subject><subject>Mechanical Engineering</subject><subject>Motion control</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Pitch (inclination)</subject><subject>Roll</subject><subject>Rolling motion</subject><subject>Sideslip</subject><subject>Stalling</subject><subject>Vibration</subject><subject>Yaw</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kD1PwzAURS0EEqXwB5gsMRvesx0nZoOKL6mCBaRulnHsJiVNip0O7a8nECQ2hqe73HOfdAg5R7hEgPwqIUKODPhwSktg-wMywSwXjCu9OCQT0Fwy0LA4JicprQBAcCgm5Pq5a5u69TbS0NTLqqebapdql2gXaF95Oq89vY3Wffiexq5p6Nq7yrZ1Wp-So2Cb5M9-c0re7u9eZ49s_vLwNLuZMyeU6FnwXimnM2mLMst0CEI67zNU74ULUpahEDlIrxxyACytKrHIuctRKg02SDElF-PuJnafW596s-q2sR1eGp5pVSAW_LvFx5aLXUrRB7OJ9drGnUEw347M6MgMjsyPI7MfIDFCaSi3Sx__pv-hvgA-y2ln</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Taha, Haithem E.</creator><creator>Hassan, Ahmed</creator><creator>Fouda, Moatasem</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9242-2045</orcidid></search><sort><creationdate>20211101</creationdate><title>Nonlinear flight physics of the Lie Bracket roll mechanism</title><author>Taha, Haithem E. ; Hassan, Ahmed ; Fouda, Moatasem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-fee66c954a8d559ff34cee516b8cf44df83704e6c12001da6d1872c714690af43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ailerons</topic><topic>Automotive Engineering</topic><topic>Brackets</topic><topic>Classical Mechanics</topic><topic>Confined spaces</topic><topic>Control</topic><topic>Control theory</topic><topic>Dynamical Systems</topic><topic>Elevators (control surfaces)</topic><topic>Engineering</topic><topic>Free flight</topic><topic>Lateral control</topic><topic>Mechanical Engineering</topic><topic>Motion control</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Pitch (inclination)</topic><topic>Roll</topic><topic>Rolling motion</topic><topic>Sideslip</topic><topic>Stalling</topic><topic>Vibration</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taha, Haithem E.</creatorcontrib><creatorcontrib>Hassan, Ahmed</creatorcontrib><creatorcontrib>Fouda, Moatasem</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taha, Haithem E.</au><au>Hassan, Ahmed</au><au>Fouda, Moatasem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear flight physics of the Lie Bracket roll mechanism</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>106</volume><issue>3</issue><spage>1627</spage><epage>1646</epage><pages>1627-1646</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, we review the concept of Lie brackets and how it can be exploited in generating motion in unactuated directions through nonlinear interactions between two or more control inputs. Applying this technique to the airplane flight dynamics near stall, a new rolling mechanism is discovered through nonlinear interactions between the elevator and the aileron control inputs. This mechanism, referred to as the Lie Bracket Roll Augmentation (LIBRA) mechanism, possesses a significantly higher roll control authority near stall compared to the conventional roll mechanism using ailerons only; it produces more than an order-of-magnitude stronger roll motion over the first second. The main contribution of this paper is to study the nonlinear flight physics that lead to this superior performance of the LIBRA mechanism. In fact, the LIBRA performance in free flight (six DOF) is double that in a confined environment of two-DOF roll-pitch dynamics. The natural feedback from the airplane motion (roll, yaw, and sideslip) into the LIBRA mechanism boosts its performance through interesting nonlinear interplay between roll and yaw, while exploiting some of the changes in the airplane characteristics near stall.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-06940-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9242-2045</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2021-11, Vol.106 (3), p.1627-1646 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2596811824 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ailerons Automotive Engineering Brackets Classical Mechanics Confined spaces Control Control theory Dynamical Systems Elevators (control surfaces) Engineering Free flight Lateral control Mechanical Engineering Motion control Original Paper Physics Pitch (inclination) Roll Rolling motion Sideslip Stalling Vibration Yaw |
title | Nonlinear flight physics of the Lie Bracket roll mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20flight%20physics%20of%20the%20Lie%20Bracket%20roll%20mechanism&rft.jtitle=Nonlinear%20dynamics&rft.au=Taha,%20Haithem%20E.&rft.date=2021-11-01&rft.volume=106&rft.issue=3&rft.spage=1627&rft.epage=1646&rft.pages=1627-1646&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-06940-z&rft_dat=%3Cproquest_cross%3E2596811824%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596811824&rft_id=info:pmid/&rfr_iscdi=true |