Domain Adaptation-Based Deep Calibration of Low-Cost PM₂.₅ Sensors

Air pollution is a severe problem growing over time. A dense air-quality monitoring network is needed to update the people regarding the air pollution status in cities. A low-cost sensor device (LCSD) based dense air-quality monitoring network is more viable than continuous ambient air quality monit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-11, Vol.21 (22), p.25941-25949
Hauptverfasser: Jha, Sonu Kumar, Kumar, Mohit, Arora, Vipul, Tripathi, Sachchida Nand, Motghare, Vidyanand Motiram, Shingare, A. A., Rajput, Karansingh A., Kamble, Sneha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25949
container_issue 22
container_start_page 25941
container_title IEEE sensors journal
container_volume 21
creator Jha, Sonu Kumar
Kumar, Mohit
Arora, Vipul
Tripathi, Sachchida Nand
Motghare, Vidyanand Motiram
Shingare, A. A.
Rajput, Karansingh A.
Kamble, Sneha
description Air pollution is a severe problem growing over time. A dense air-quality monitoring network is needed to update the people regarding the air pollution status in cities. A low-cost sensor device (LCSD) based dense air-quality monitoring network is more viable than continuous ambient air quality monitoring stations (CAAQMS). An in-field calibration approach is needed to improve agreements of the LCSDs to CAAQMS. The present work aims to propose a calibration method for PM 2.5 using domain adaptation technique to reduce the collocation duration of LCSDs and CAAQMS. A novel calibration approach is proposed in this work for the measured PM 2.5 levels of LCSDs. The dataset used for the experimentation consists of PM 2.5 values and other parameters (PM 10 , temperature, and humidity) at hourly duration over a period of three months data. We propose new features, by combining PM 2.5 , PM 10 , temperature, and humidity, that significantly improved the performance of calibration. Further, the calibration model is adapted to the target location for a new LCSD with a collocation time of two days. The proposed model shows high correlation coefficient values (R 2 ) and significantly low mean absolute percentage error (MAPE) than that of other baseline models. Thus, the proposed model helps in reducing the collocation time while maintaining high calibration performance.
doi_str_mv 10.1109/JSEN.2021.3118454
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2596781932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9567697</ieee_id><sourcerecordid>2596781932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-f74e2b7082aa690731e02599e1db703a739353950138a0752a18df7ac8cc5f663</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOKc_QLwJeJ2at2ma5HJ2mx_MD5iCdyFrU-jYmpp0iLcD_-h-ia0bXr2HwznnhQehS6ARAFU3j_PJcxTTGCIGIBOeHKEBcC4JiEQe95pRkjDxcYrOQlhSCkpwMUDTsVubqsajwjStaStXk1sTbIHH1jY4M6tq4f9s7Eo8c18kc6HFr0-77TbabX_w3NbB-XCOTkqzCvbicIfofTp5y-7J7OXuIRvNSM5Y2pJSJDZeCCpjY1JFBQNLY66UhaJzmRFMMc4Up8CkoYLHBmRRCpPLPOdlmrIhut7vNt59bmxo9dJtfN291N1OKiQoFncp2Kdy70LwttSNr9bGf2ugusele1y6x6UPuLrO1b5TWWv_84qnIlWC_QIcwmVV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596781932</pqid></control><display><type>article</type><title>Domain Adaptation-Based Deep Calibration of Low-Cost PM₂.₅ Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Jha, Sonu Kumar ; Kumar, Mohit ; Arora, Vipul ; Tripathi, Sachchida Nand ; Motghare, Vidyanand Motiram ; Shingare, A. A. ; Rajput, Karansingh A. ; Kamble, Sneha</creator><creatorcontrib>Jha, Sonu Kumar ; Kumar, Mohit ; Arora, Vipul ; Tripathi, Sachchida Nand ; Motghare, Vidyanand Motiram ; Shingare, A. A. ; Rajput, Karansingh A. ; Kamble, Sneha</creatorcontrib><description>Air pollution is a severe problem growing over time. A dense air-quality monitoring network is needed to update the people regarding the air pollution status in cities. A low-cost sensor device (LCSD) based dense air-quality monitoring network is more viable than continuous ambient air quality monitoring stations (CAAQMS). An in-field calibration approach is needed to improve agreements of the LCSDs to CAAQMS. The present work aims to propose a calibration method for PM 2.5 using domain adaptation technique to reduce the collocation duration of LCSDs and CAAQMS. A novel calibration approach is proposed in this work for the measured PM 2.5 levels of LCSDs. The dataset used for the experimentation consists of PM 2.5 values and other parameters (PM 10 , temperature, and humidity) at hourly duration over a period of three months data. We propose new features, by combining PM 2.5 , PM 10 , temperature, and humidity, that significantly improved the performance of calibration. Further, the calibration model is adapted to the target location for a new LCSD with a collocation time of two days. The proposed model shows high correlation coefficient values (R 2 ) and significantly low mean absolute percentage error (MAPE) than that of other baseline models. Thus, the proposed model helps in reducing the collocation time while maintaining high calibration performance.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3118454</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Adaptation models ; Air monitoring ; Air pollution ; Air quality ; Calibration ; Collocation ; Computational modeling ; Correlation ; Correlation coefficients ; deep neural network ; domain adaptation ; Domains ; Environmental monitoring ; Experimentation ; Humidity ; Low cost ; Monitoring ; PM₂. ; Pollution measurement ; Pollution monitoring ; Sensor phenomena and characterization</subject><ispartof>IEEE sensors journal, 2021-11, Vol.21 (22), p.25941-25949</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-f74e2b7082aa690731e02599e1db703a739353950138a0752a18df7ac8cc5f663</citedby><cites>FETCH-LOGICAL-c336t-f74e2b7082aa690731e02599e1db703a739353950138a0752a18df7ac8cc5f663</cites><orcidid>0000-0002-6402-4680 ; 0000-0002-1207-1258 ; 0000-0002-3355-8815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9567697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9567697$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jha, Sonu Kumar</creatorcontrib><creatorcontrib>Kumar, Mohit</creatorcontrib><creatorcontrib>Arora, Vipul</creatorcontrib><creatorcontrib>Tripathi, Sachchida Nand</creatorcontrib><creatorcontrib>Motghare, Vidyanand Motiram</creatorcontrib><creatorcontrib>Shingare, A. A.</creatorcontrib><creatorcontrib>Rajput, Karansingh A.</creatorcontrib><creatorcontrib>Kamble, Sneha</creatorcontrib><title>Domain Adaptation-Based Deep Calibration of Low-Cost PM₂.₅ Sensors</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Air pollution is a severe problem growing over time. A dense air-quality monitoring network is needed to update the people regarding the air pollution status in cities. A low-cost sensor device (LCSD) based dense air-quality monitoring network is more viable than continuous ambient air quality monitoring stations (CAAQMS). An in-field calibration approach is needed to improve agreements of the LCSDs to CAAQMS. The present work aims to propose a calibration method for PM 2.5 using domain adaptation technique to reduce the collocation duration of LCSDs and CAAQMS. A novel calibration approach is proposed in this work for the measured PM 2.5 levels of LCSDs. The dataset used for the experimentation consists of PM 2.5 values and other parameters (PM 10 , temperature, and humidity) at hourly duration over a period of three months data. We propose new features, by combining PM 2.5 , PM 10 , temperature, and humidity, that significantly improved the performance of calibration. Further, the calibration model is adapted to the target location for a new LCSD with a collocation time of two days. The proposed model shows high correlation coefficient values (R 2 ) and significantly low mean absolute percentage error (MAPE) than that of other baseline models. Thus, the proposed model helps in reducing the collocation time while maintaining high calibration performance.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Air monitoring</subject><subject>Air pollution</subject><subject>Air quality</subject><subject>Calibration</subject><subject>Collocation</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Correlation coefficients</subject><subject>deep neural network</subject><subject>domain adaptation</subject><subject>Domains</subject><subject>Environmental monitoring</subject><subject>Experimentation</subject><subject>Humidity</subject><subject>Low cost</subject><subject>Monitoring</subject><subject>PM₂.</subject><subject>Pollution measurement</subject><subject>Pollution monitoring</subject><subject>Sensor phenomena and characterization</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAYhYMoOKc_QLwJeJ2at2ma5HJ2mx_MD5iCdyFrU-jYmpp0iLcD_-h-ia0bXr2HwznnhQehS6ARAFU3j_PJcxTTGCIGIBOeHKEBcC4JiEQe95pRkjDxcYrOQlhSCkpwMUDTsVubqsajwjStaStXk1sTbIHH1jY4M6tq4f9s7Eo8c18kc6HFr0-77TbabX_w3NbB-XCOTkqzCvbicIfofTp5y-7J7OXuIRvNSM5Y2pJSJDZeCCpjY1JFBQNLY66UhaJzmRFMMc4Up8CkoYLHBmRRCpPLPOdlmrIhut7vNt59bmxo9dJtfN291N1OKiQoFncp2Kdy70LwttSNr9bGf2ugusele1y6x6UPuLrO1b5TWWv_84qnIlWC_QIcwmVV</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Jha, Sonu Kumar</creator><creator>Kumar, Mohit</creator><creator>Arora, Vipul</creator><creator>Tripathi, Sachchida Nand</creator><creator>Motghare, Vidyanand Motiram</creator><creator>Shingare, A. A.</creator><creator>Rajput, Karansingh A.</creator><creator>Kamble, Sneha</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6402-4680</orcidid><orcidid>https://orcid.org/0000-0002-1207-1258</orcidid><orcidid>https://orcid.org/0000-0002-3355-8815</orcidid></search><sort><creationdate>20211115</creationdate><title>Domain Adaptation-Based Deep Calibration of Low-Cost PM₂.₅ Sensors</title><author>Jha, Sonu Kumar ; Kumar, Mohit ; Arora, Vipul ; Tripathi, Sachchida Nand ; Motghare, Vidyanand Motiram ; Shingare, A. A. ; Rajput, Karansingh A. ; Kamble, Sneha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-f74e2b7082aa690731e02599e1db703a739353950138a0752a18df7ac8cc5f663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Air monitoring</topic><topic>Air pollution</topic><topic>Air quality</topic><topic>Calibration</topic><topic>Collocation</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Correlation coefficients</topic><topic>deep neural network</topic><topic>domain adaptation</topic><topic>Domains</topic><topic>Environmental monitoring</topic><topic>Experimentation</topic><topic>Humidity</topic><topic>Low cost</topic><topic>Monitoring</topic><topic>PM₂.</topic><topic>Pollution measurement</topic><topic>Pollution monitoring</topic><topic>Sensor phenomena and characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jha, Sonu Kumar</creatorcontrib><creatorcontrib>Kumar, Mohit</creatorcontrib><creatorcontrib>Arora, Vipul</creatorcontrib><creatorcontrib>Tripathi, Sachchida Nand</creatorcontrib><creatorcontrib>Motghare, Vidyanand Motiram</creatorcontrib><creatorcontrib>Shingare, A. A.</creatorcontrib><creatorcontrib>Rajput, Karansingh A.</creatorcontrib><creatorcontrib>Kamble, Sneha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jha, Sonu Kumar</au><au>Kumar, Mohit</au><au>Arora, Vipul</au><au>Tripathi, Sachchida Nand</au><au>Motghare, Vidyanand Motiram</au><au>Shingare, A. A.</au><au>Rajput, Karansingh A.</au><au>Kamble, Sneha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain Adaptation-Based Deep Calibration of Low-Cost PM₂.₅ Sensors</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-11-15</date><risdate>2021</risdate><volume>21</volume><issue>22</issue><spage>25941</spage><epage>25949</epage><pages>25941-25949</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Air pollution is a severe problem growing over time. A dense air-quality monitoring network is needed to update the people regarding the air pollution status in cities. A low-cost sensor device (LCSD) based dense air-quality monitoring network is more viable than continuous ambient air quality monitoring stations (CAAQMS). An in-field calibration approach is needed to improve agreements of the LCSDs to CAAQMS. The present work aims to propose a calibration method for PM 2.5 using domain adaptation technique to reduce the collocation duration of LCSDs and CAAQMS. A novel calibration approach is proposed in this work for the measured PM 2.5 levels of LCSDs. The dataset used for the experimentation consists of PM 2.5 values and other parameters (PM 10 , temperature, and humidity) at hourly duration over a period of three months data. We propose new features, by combining PM 2.5 , PM 10 , temperature, and humidity, that significantly improved the performance of calibration. Further, the calibration model is adapted to the target location for a new LCSD with a collocation time of two days. The proposed model shows high correlation coefficient values (R 2 ) and significantly low mean absolute percentage error (MAPE) than that of other baseline models. Thus, the proposed model helps in reducing the collocation time while maintaining high calibration performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3118454</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6402-4680</orcidid><orcidid>https://orcid.org/0000-0002-1207-1258</orcidid><orcidid>https://orcid.org/0000-0002-3355-8815</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-11, Vol.21 (22), p.25941-25949
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2596781932
source IEEE Electronic Library (IEL)
subjects Adaptation
Adaptation models
Air monitoring
Air pollution
Air quality
Calibration
Collocation
Computational modeling
Correlation
Correlation coefficients
deep neural network
domain adaptation
Domains
Environmental monitoring
Experimentation
Humidity
Low cost
Monitoring
PM₂.
Pollution measurement
Pollution monitoring
Sensor phenomena and characterization
title Domain Adaptation-Based Deep Calibration of Low-Cost PM₂.₅ Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20Adaptation-Based%20Deep%20Calibration%20of%20Low-Cost%20PM%E2%82%82.%E2%82%85%20Sensors&rft.jtitle=IEEE%20sensors%20journal&rft.au=Jha,%20Sonu%20Kumar&rft.date=2021-11-15&rft.volume=21&rft.issue=22&rft.spage=25941&rft.epage=25949&rft.pages=25941-25949&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3118454&rft_dat=%3Cproquest_RIE%3E2596781932%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596781932&rft_id=info:pmid/&rft_ieee_id=9567697&rfr_iscdi=true