Domain Adaptation-Based Deep Calibration of Low-Cost PM₂.₅ Sensors
Air pollution is a severe problem growing over time. A dense air-quality monitoring network is needed to update the people regarding the air pollution status in cities. A low-cost sensor device (LCSD) based dense air-quality monitoring network is more viable than continuous ambient air quality monit...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-11, Vol.21 (22), p.25941-25949 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25949 |
---|---|
container_issue | 22 |
container_start_page | 25941 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Jha, Sonu Kumar Kumar, Mohit Arora, Vipul Tripathi, Sachchida Nand Motghare, Vidyanand Motiram Shingare, A. A. Rajput, Karansingh A. Kamble, Sneha |
description | Air pollution is a severe problem growing over time. A dense air-quality monitoring network is needed to update the people regarding the air pollution status in cities. A low-cost sensor device (LCSD) based dense air-quality monitoring network is more viable than continuous ambient air quality monitoring stations (CAAQMS). An in-field calibration approach is needed to improve agreements of the LCSDs to CAAQMS. The present work aims to propose a calibration method for PM 2.5 using domain adaptation technique to reduce the collocation duration of LCSDs and CAAQMS. A novel calibration approach is proposed in this work for the measured PM 2.5 levels of LCSDs. The dataset used for the experimentation consists of PM 2.5 values and other parameters (PM 10 , temperature, and humidity) at hourly duration over a period of three months data. We propose new features, by combining PM 2.5 , PM 10 , temperature, and humidity, that significantly improved the performance of calibration. Further, the calibration model is adapted to the target location for a new LCSD with a collocation time of two days. The proposed model shows high correlation coefficient values (R 2 ) and significantly low mean absolute percentage error (MAPE) than that of other baseline models. Thus, the proposed model helps in reducing the collocation time while maintaining high calibration performance. |
doi_str_mv | 10.1109/JSEN.2021.3118454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2596781932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9567697</ieee_id><sourcerecordid>2596781932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-f74e2b7082aa690731e02599e1db703a739353950138a0752a18df7ac8cc5f663</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOKc_QLwJeJ2at2ma5HJ2mx_MD5iCdyFrU-jYmpp0iLcD_-h-ia0bXr2HwznnhQehS6ARAFU3j_PJcxTTGCIGIBOeHKEBcC4JiEQe95pRkjDxcYrOQlhSCkpwMUDTsVubqsajwjStaStXk1sTbIHH1jY4M6tq4f9s7Eo8c18kc6HFr0-77TbabX_w3NbB-XCOTkqzCvbicIfofTp5y-7J7OXuIRvNSM5Y2pJSJDZeCCpjY1JFBQNLY66UhaJzmRFMMc4Up8CkoYLHBmRRCpPLPOdlmrIhut7vNt59bmxo9dJtfN291N1OKiQoFncp2Kdy70LwttSNr9bGf2ugusele1y6x6UPuLrO1b5TWWv_84qnIlWC_QIcwmVV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596781932</pqid></control><display><type>article</type><title>Domain Adaptation-Based Deep Calibration of Low-Cost PM₂.₅ Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Jha, Sonu Kumar ; Kumar, Mohit ; Arora, Vipul ; Tripathi, Sachchida Nand ; Motghare, Vidyanand Motiram ; Shingare, A. A. ; Rajput, Karansingh A. ; Kamble, Sneha</creator><creatorcontrib>Jha, Sonu Kumar ; Kumar, Mohit ; Arora, Vipul ; Tripathi, Sachchida Nand ; Motghare, Vidyanand Motiram ; Shingare, A. A. ; Rajput, Karansingh A. ; Kamble, Sneha</creatorcontrib><description>Air pollution is a severe problem growing over time. A dense air-quality monitoring network is needed to update the people regarding the air pollution status in cities. A low-cost sensor device (LCSD) based dense air-quality monitoring network is more viable than continuous ambient air quality monitoring stations (CAAQMS). An in-field calibration approach is needed to improve agreements of the LCSDs to CAAQMS. The present work aims to propose a calibration method for PM 2.5 using domain adaptation technique to reduce the collocation duration of LCSDs and CAAQMS. A novel calibration approach is proposed in this work for the measured PM 2.5 levels of LCSDs. The dataset used for the experimentation consists of PM 2.5 values and other parameters (PM 10 , temperature, and humidity) at hourly duration over a period of three months data. We propose new features, by combining PM 2.5 , PM 10 , temperature, and humidity, that significantly improved the performance of calibration. Further, the calibration model is adapted to the target location for a new LCSD with a collocation time of two days. The proposed model shows high correlation coefficient values (R 2 ) and significantly low mean absolute percentage error (MAPE) than that of other baseline models. Thus, the proposed model helps in reducing the collocation time while maintaining high calibration performance.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3118454</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Adaptation models ; Air monitoring ; Air pollution ; Air quality ; Calibration ; Collocation ; Computational modeling ; Correlation ; Correlation coefficients ; deep neural network ; domain adaptation ; Domains ; Environmental monitoring ; Experimentation ; Humidity ; Low cost ; Monitoring ; PM₂. ; Pollution measurement ; Pollution monitoring ; Sensor phenomena and characterization</subject><ispartof>IEEE sensors journal, 2021-11, Vol.21 (22), p.25941-25949</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-f74e2b7082aa690731e02599e1db703a739353950138a0752a18df7ac8cc5f663</citedby><cites>FETCH-LOGICAL-c336t-f74e2b7082aa690731e02599e1db703a739353950138a0752a18df7ac8cc5f663</cites><orcidid>0000-0002-6402-4680 ; 0000-0002-1207-1258 ; 0000-0002-3355-8815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9567697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9567697$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jha, Sonu Kumar</creatorcontrib><creatorcontrib>Kumar, Mohit</creatorcontrib><creatorcontrib>Arora, Vipul</creatorcontrib><creatorcontrib>Tripathi, Sachchida Nand</creatorcontrib><creatorcontrib>Motghare, Vidyanand Motiram</creatorcontrib><creatorcontrib>Shingare, A. A.</creatorcontrib><creatorcontrib>Rajput, Karansingh A.</creatorcontrib><creatorcontrib>Kamble, Sneha</creatorcontrib><title>Domain Adaptation-Based Deep Calibration of Low-Cost PM₂.₅ Sensors</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Air pollution is a severe problem growing over time. A dense air-quality monitoring network is needed to update the people regarding the air pollution status in cities. A low-cost sensor device (LCSD) based dense air-quality monitoring network is more viable than continuous ambient air quality monitoring stations (CAAQMS). An in-field calibration approach is needed to improve agreements of the LCSDs to CAAQMS. The present work aims to propose a calibration method for PM 2.5 using domain adaptation technique to reduce the collocation duration of LCSDs and CAAQMS. A novel calibration approach is proposed in this work for the measured PM 2.5 levels of LCSDs. The dataset used for the experimentation consists of PM 2.5 values and other parameters (PM 10 , temperature, and humidity) at hourly duration over a period of three months data. We propose new features, by combining PM 2.5 , PM 10 , temperature, and humidity, that significantly improved the performance of calibration. Further, the calibration model is adapted to the target location for a new LCSD with a collocation time of two days. The proposed model shows high correlation coefficient values (R 2 ) and significantly low mean absolute percentage error (MAPE) than that of other baseline models. Thus, the proposed model helps in reducing the collocation time while maintaining high calibration performance.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Air monitoring</subject><subject>Air pollution</subject><subject>Air quality</subject><subject>Calibration</subject><subject>Collocation</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Correlation coefficients</subject><subject>deep neural network</subject><subject>domain adaptation</subject><subject>Domains</subject><subject>Environmental monitoring</subject><subject>Experimentation</subject><subject>Humidity</subject><subject>Low cost</subject><subject>Monitoring</subject><subject>PM₂.</subject><subject>Pollution measurement</subject><subject>Pollution monitoring</subject><subject>Sensor phenomena and characterization</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAYhYMoOKc_QLwJeJ2at2ma5HJ2mx_MD5iCdyFrU-jYmpp0iLcD_-h-ia0bXr2HwznnhQehS6ARAFU3j_PJcxTTGCIGIBOeHKEBcC4JiEQe95pRkjDxcYrOQlhSCkpwMUDTsVubqsajwjStaStXk1sTbIHH1jY4M6tq4f9s7Eo8c18kc6HFr0-77TbabX_w3NbB-XCOTkqzCvbicIfofTp5y-7J7OXuIRvNSM5Y2pJSJDZeCCpjY1JFBQNLY66UhaJzmRFMMc4Up8CkoYLHBmRRCpPLPOdlmrIhut7vNt59bmxo9dJtfN291N1OKiQoFncp2Kdy70LwttSNr9bGf2ugusele1y6x6UPuLrO1b5TWWv_84qnIlWC_QIcwmVV</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Jha, Sonu Kumar</creator><creator>Kumar, Mohit</creator><creator>Arora, Vipul</creator><creator>Tripathi, Sachchida Nand</creator><creator>Motghare, Vidyanand Motiram</creator><creator>Shingare, A. A.</creator><creator>Rajput, Karansingh A.</creator><creator>Kamble, Sneha</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6402-4680</orcidid><orcidid>https://orcid.org/0000-0002-1207-1258</orcidid><orcidid>https://orcid.org/0000-0002-3355-8815</orcidid></search><sort><creationdate>20211115</creationdate><title>Domain Adaptation-Based Deep Calibration of Low-Cost PM₂.₅ Sensors</title><author>Jha, Sonu Kumar ; Kumar, Mohit ; Arora, Vipul ; Tripathi, Sachchida Nand ; Motghare, Vidyanand Motiram ; Shingare, A. A. ; Rajput, Karansingh A. ; Kamble, Sneha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-f74e2b7082aa690731e02599e1db703a739353950138a0752a18df7ac8cc5f663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Air monitoring</topic><topic>Air pollution</topic><topic>Air quality</topic><topic>Calibration</topic><topic>Collocation</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Correlation coefficients</topic><topic>deep neural network</topic><topic>domain adaptation</topic><topic>Domains</topic><topic>Environmental monitoring</topic><topic>Experimentation</topic><topic>Humidity</topic><topic>Low cost</topic><topic>Monitoring</topic><topic>PM₂.</topic><topic>Pollution measurement</topic><topic>Pollution monitoring</topic><topic>Sensor phenomena and characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jha, Sonu Kumar</creatorcontrib><creatorcontrib>Kumar, Mohit</creatorcontrib><creatorcontrib>Arora, Vipul</creatorcontrib><creatorcontrib>Tripathi, Sachchida Nand</creatorcontrib><creatorcontrib>Motghare, Vidyanand Motiram</creatorcontrib><creatorcontrib>Shingare, A. A.</creatorcontrib><creatorcontrib>Rajput, Karansingh A.</creatorcontrib><creatorcontrib>Kamble, Sneha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jha, Sonu Kumar</au><au>Kumar, Mohit</au><au>Arora, Vipul</au><au>Tripathi, Sachchida Nand</au><au>Motghare, Vidyanand Motiram</au><au>Shingare, A. A.</au><au>Rajput, Karansingh A.</au><au>Kamble, Sneha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain Adaptation-Based Deep Calibration of Low-Cost PM₂.₅ Sensors</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-11-15</date><risdate>2021</risdate><volume>21</volume><issue>22</issue><spage>25941</spage><epage>25949</epage><pages>25941-25949</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Air pollution is a severe problem growing over time. A dense air-quality monitoring network is needed to update the people regarding the air pollution status in cities. A low-cost sensor device (LCSD) based dense air-quality monitoring network is more viable than continuous ambient air quality monitoring stations (CAAQMS). An in-field calibration approach is needed to improve agreements of the LCSDs to CAAQMS. The present work aims to propose a calibration method for PM 2.5 using domain adaptation technique to reduce the collocation duration of LCSDs and CAAQMS. A novel calibration approach is proposed in this work for the measured PM 2.5 levels of LCSDs. The dataset used for the experimentation consists of PM 2.5 values and other parameters (PM 10 , temperature, and humidity) at hourly duration over a period of three months data. We propose new features, by combining PM 2.5 , PM 10 , temperature, and humidity, that significantly improved the performance of calibration. Further, the calibration model is adapted to the target location for a new LCSD with a collocation time of two days. The proposed model shows high correlation coefficient values (R 2 ) and significantly low mean absolute percentage error (MAPE) than that of other baseline models. Thus, the proposed model helps in reducing the collocation time while maintaining high calibration performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3118454</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6402-4680</orcidid><orcidid>https://orcid.org/0000-0002-1207-1258</orcidid><orcidid>https://orcid.org/0000-0002-3355-8815</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-11, Vol.21 (22), p.25941-25949 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2596781932 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation Adaptation models Air monitoring Air pollution Air quality Calibration Collocation Computational modeling Correlation Correlation coefficients deep neural network domain adaptation Domains Environmental monitoring Experimentation Humidity Low cost Monitoring PM₂. Pollution measurement Pollution monitoring Sensor phenomena and characterization |
title | Domain Adaptation-Based Deep Calibration of Low-Cost PM₂.₅ Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20Adaptation-Based%20Deep%20Calibration%20of%20Low-Cost%20PM%E2%82%82.%E2%82%85%20Sensors&rft.jtitle=IEEE%20sensors%20journal&rft.au=Jha,%20Sonu%20Kumar&rft.date=2021-11-15&rft.volume=21&rft.issue=22&rft.spage=25941&rft.epage=25949&rft.pages=25941-25949&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3118454&rft_dat=%3Cproquest_RIE%3E2596781932%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596781932&rft_id=info:pmid/&rft_ieee_id=9567697&rfr_iscdi=true |