Resource Efficient Geo-Textual Hierarchical Clustering Framework for Social IoT Applications

The Social Internet of Things (SIoT) paradigm incorporates social networking concepts with the Internet of Things (IoT) solutions to support novel services. The massive amount of data (big data) produced by SIoT necessitates efficient information processing frameworks to exploit social relationships...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-11, Vol.21 (22), p.25114-25122
Hauptverfasser: Shuja, Junaid, Humayun, Mohammad Ali, Alasmary, Waleed, Sinky, Hassan, Alanazi, Eisa, Khan, Muhammad Khurram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25122
container_issue 22
container_start_page 25114
container_title IEEE sensors journal
container_volume 21
creator Shuja, Junaid
Humayun, Mohammad Ali
Alasmary, Waleed
Sinky, Hassan
Alanazi, Eisa
Khan, Muhammad Khurram
description The Social Internet of Things (SIoT) paradigm incorporates social networking concepts with the Internet of Things (IoT) solutions to support novel services. The massive amount of data (big data) produced by SIoT necessitates efficient information processing frameworks to exploit social relationships and comprehend actionable information from real-world observations. Data from AI-enabled sensors (AIS) is typically geo-tagged, thus demanding geo-textual processing for information retrieval and analysis. Social media applications are the main source of geo-textual data as mobile users connect with millions of posts daily. The processing of big geo-textual data requires resource-efficient algorithms and frameworks. Clustering algorithms are often applied to geo-textual data to examine spatial, textual, and temporal information for event detection, sentiment analysis, and search query response. Clustering algorithms on big data are resource-hungry requiring comparisons among all data points to calculate similarity and distance metrics. Existing hybrid clustering techniques execute algorithms collectively on geo-textual data resulting in a enormous footprint for big data. We propose a resource-efficient clustering framework for AIS that hierarchically performs geo-textual clustering without significantly lowering the clustering quality. The proposed framework achieves substantial time and memory efficiency while reducing the overall resource requirements for constrained end-user and edge devices compared to the standard hybrid geo-textual clustering framework. Moreover, we augment the research work by developing open-source scripts for both hierarchical and hybrid clustering frameworks.
doi_str_mv 10.1109/JSEN.2021.3060953
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2596781853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9359746</ieee_id><sourcerecordid>2596781853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6524b8b055399c62388d8ccd49e14fda7a2dec72c6aa2dc5b0dd4b128ad9920d3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2Zj6ZJLsfYlwwFN8ELIaRpqpldU5MW9d-bMvHqvIfzvudwHgCuEZwgBMXd_Xb-MMEQowmBORSUnIARopSniGX8dNAEphlhL-fgIoQ9hEgwykbg9ckE13ttknlVWW1N0yVL49Kd-e56VScra7zy-t3q2MzqPnTG2-YtWXh1MF_OfySV88nWaRvna7dLpm1bR3NnXRMuwVml6mCu_uoYPC_mu9kq3Twu17PpJtVYkC7NKc4KXkBKiRA6x4TzkmtdZsKgrCoVU7g0mmGdq6g0LWBZZgXCXJVCYFiSMbg97m29--xN6OQ-_tTEkxJTkTOOOCXRhY4u7V0I3lSy9fag_I9EUA4Q5QBRDhDlH8SYuTlmrDHm3y8IFSzLyS-aCW6n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596781853</pqid></control><display><type>article</type><title>Resource Efficient Geo-Textual Hierarchical Clustering Framework for Social IoT Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Shuja, Junaid ; Humayun, Mohammad Ali ; Alasmary, Waleed ; Sinky, Hassan ; Alanazi, Eisa ; Khan, Muhammad Khurram</creator><creatorcontrib>Shuja, Junaid ; Humayun, Mohammad Ali ; Alasmary, Waleed ; Sinky, Hassan ; Alanazi, Eisa ; Khan, Muhammad Khurram</creatorcontrib><description>The Social Internet of Things (SIoT) paradigm incorporates social networking concepts with the Internet of Things (IoT) solutions to support novel services. The massive amount of data (big data) produced by SIoT necessitates efficient information processing frameworks to exploit social relationships and comprehend actionable information from real-world observations. Data from AI-enabled sensors (AIS) is typically geo-tagged, thus demanding geo-textual processing for information retrieval and analysis. Social media applications are the main source of geo-textual data as mobile users connect with millions of posts daily. The processing of big geo-textual data requires resource-efficient algorithms and frameworks. Clustering algorithms are often applied to geo-textual data to examine spatial, textual, and temporal information for event detection, sentiment analysis, and search query response. Clustering algorithms on big data are resource-hungry requiring comparisons among all data points to calculate similarity and distance metrics. Existing hybrid clustering techniques execute algorithms collectively on geo-textual data resulting in a enormous footprint for big data. We propose a resource-efficient clustering framework for AIS that hierarchically performs geo-textual clustering without significantly lowering the clustering quality. The proposed framework achieves substantial time and memory efficiency while reducing the overall resource requirements for constrained end-user and edge devices compared to the standard hybrid geo-textual clustering framework. Moreover, we augment the research work by developing open-source scripts for both hierarchical and hybrid clustering frameworks.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3060953</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Big Data ; Cluster analysis ; Clustering ; Clustering algorithms ; Data mining ; Data points ; Data processing ; geo-textual ; Information retrieval ; Internet of Things ; machine learning ; Massive data points ; resource efficiency ; Sensors ; social IoT ; Social networking (online) ; Social networks ; Spatial data ; Task analysis</subject><ispartof>IEEE sensors journal, 2021-11, Vol.21 (22), p.25114-25122</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6524b8b055399c62388d8ccd49e14fda7a2dec72c6aa2dc5b0dd4b128ad9920d3</citedby><cites>FETCH-LOGICAL-c293t-6524b8b055399c62388d8ccd49e14fda7a2dec72c6aa2dc5b0dd4b128ad9920d3</cites><orcidid>0000-0001-6636-0533 ; 0000-0002-4349-144X ; 0000-0002-5560-1116 ; 0000-0002-2649-5860 ; 0000-0003-0726-5311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9359746$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9359746$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shuja, Junaid</creatorcontrib><creatorcontrib>Humayun, Mohammad Ali</creatorcontrib><creatorcontrib>Alasmary, Waleed</creatorcontrib><creatorcontrib>Sinky, Hassan</creatorcontrib><creatorcontrib>Alanazi, Eisa</creatorcontrib><creatorcontrib>Khan, Muhammad Khurram</creatorcontrib><title>Resource Efficient Geo-Textual Hierarchical Clustering Framework for Social IoT Applications</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The Social Internet of Things (SIoT) paradigm incorporates social networking concepts with the Internet of Things (IoT) solutions to support novel services. The massive amount of data (big data) produced by SIoT necessitates efficient information processing frameworks to exploit social relationships and comprehend actionable information from real-world observations. Data from AI-enabled sensors (AIS) is typically geo-tagged, thus demanding geo-textual processing for information retrieval and analysis. Social media applications are the main source of geo-textual data as mobile users connect with millions of posts daily. The processing of big geo-textual data requires resource-efficient algorithms and frameworks. Clustering algorithms are often applied to geo-textual data to examine spatial, textual, and temporal information for event detection, sentiment analysis, and search query response. Clustering algorithms on big data are resource-hungry requiring comparisons among all data points to calculate similarity and distance metrics. Existing hybrid clustering techniques execute algorithms collectively on geo-textual data resulting in a enormous footprint for big data. We propose a resource-efficient clustering framework for AIS that hierarchically performs geo-textual clustering without significantly lowering the clustering quality. The proposed framework achieves substantial time and memory efficiency while reducing the overall resource requirements for constrained end-user and edge devices compared to the standard hybrid geo-textual clustering framework. Moreover, we augment the research work by developing open-source scripts for both hierarchical and hybrid clustering frameworks.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Data mining</subject><subject>Data points</subject><subject>Data processing</subject><subject>geo-textual</subject><subject>Information retrieval</subject><subject>Internet of Things</subject><subject>machine learning</subject><subject>Massive data points</subject><subject>resource efficiency</subject><subject>Sensors</subject><subject>social IoT</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Spatial data</subject><subject>Task analysis</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2Zj6ZJLsfYlwwFN8ELIaRpqpldU5MW9d-bMvHqvIfzvudwHgCuEZwgBMXd_Xb-MMEQowmBORSUnIARopSniGX8dNAEphlhL-fgIoQ9hEgwykbg9ckE13ttknlVWW1N0yVL49Kd-e56VScra7zy-t3q2MzqPnTG2-YtWXh1MF_OfySV88nWaRvna7dLpm1bR3NnXRMuwVml6mCu_uoYPC_mu9kq3Twu17PpJtVYkC7NKc4KXkBKiRA6x4TzkmtdZsKgrCoVU7g0mmGdq6g0LWBZZgXCXJVCYFiSMbg97m29--xN6OQ-_tTEkxJTkTOOOCXRhY4u7V0I3lSy9fag_I9EUA4Q5QBRDhDlH8SYuTlmrDHm3y8IFSzLyS-aCW6n</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Shuja, Junaid</creator><creator>Humayun, Mohammad Ali</creator><creator>Alasmary, Waleed</creator><creator>Sinky, Hassan</creator><creator>Alanazi, Eisa</creator><creator>Khan, Muhammad Khurram</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6636-0533</orcidid><orcidid>https://orcid.org/0000-0002-4349-144X</orcidid><orcidid>https://orcid.org/0000-0002-5560-1116</orcidid><orcidid>https://orcid.org/0000-0002-2649-5860</orcidid><orcidid>https://orcid.org/0000-0003-0726-5311</orcidid></search><sort><creationdate>20211115</creationdate><title>Resource Efficient Geo-Textual Hierarchical Clustering Framework for Social IoT Applications</title><author>Shuja, Junaid ; Humayun, Mohammad Ali ; Alasmary, Waleed ; Sinky, Hassan ; Alanazi, Eisa ; Khan, Muhammad Khurram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6524b8b055399c62388d8ccd49e14fda7a2dec72c6aa2dc5b0dd4b128ad9920d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Data mining</topic><topic>Data points</topic><topic>Data processing</topic><topic>geo-textual</topic><topic>Information retrieval</topic><topic>Internet of Things</topic><topic>machine learning</topic><topic>Massive data points</topic><topic>resource efficiency</topic><topic>Sensors</topic><topic>social IoT</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Spatial data</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shuja, Junaid</creatorcontrib><creatorcontrib>Humayun, Mohammad Ali</creatorcontrib><creatorcontrib>Alasmary, Waleed</creatorcontrib><creatorcontrib>Sinky, Hassan</creatorcontrib><creatorcontrib>Alanazi, Eisa</creatorcontrib><creatorcontrib>Khan, Muhammad Khurram</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shuja, Junaid</au><au>Humayun, Mohammad Ali</au><au>Alasmary, Waleed</au><au>Sinky, Hassan</au><au>Alanazi, Eisa</au><au>Khan, Muhammad Khurram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resource Efficient Geo-Textual Hierarchical Clustering Framework for Social IoT Applications</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-11-15</date><risdate>2021</risdate><volume>21</volume><issue>22</issue><spage>25114</spage><epage>25122</epage><pages>25114-25122</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The Social Internet of Things (SIoT) paradigm incorporates social networking concepts with the Internet of Things (IoT) solutions to support novel services. The massive amount of data (big data) produced by SIoT necessitates efficient information processing frameworks to exploit social relationships and comprehend actionable information from real-world observations. Data from AI-enabled sensors (AIS) is typically geo-tagged, thus demanding geo-textual processing for information retrieval and analysis. Social media applications are the main source of geo-textual data as mobile users connect with millions of posts daily. The processing of big geo-textual data requires resource-efficient algorithms and frameworks. Clustering algorithms are often applied to geo-textual data to examine spatial, textual, and temporal information for event detection, sentiment analysis, and search query response. Clustering algorithms on big data are resource-hungry requiring comparisons among all data points to calculate similarity and distance metrics. Existing hybrid clustering techniques execute algorithms collectively on geo-textual data resulting in a enormous footprint for big data. We propose a resource-efficient clustering framework for AIS that hierarchically performs geo-textual clustering without significantly lowering the clustering quality. The proposed framework achieves substantial time and memory efficiency while reducing the overall resource requirements for constrained end-user and edge devices compared to the standard hybrid geo-textual clustering framework. Moreover, we augment the research work by developing open-source scripts for both hierarchical and hybrid clustering frameworks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3060953</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6636-0533</orcidid><orcidid>https://orcid.org/0000-0002-4349-144X</orcidid><orcidid>https://orcid.org/0000-0002-5560-1116</orcidid><orcidid>https://orcid.org/0000-0002-2649-5860</orcidid><orcidid>https://orcid.org/0000-0003-0726-5311</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-11, Vol.21 (22), p.25114-25122
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2596781853
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial intelligence
Big Data
Cluster analysis
Clustering
Clustering algorithms
Data mining
Data points
Data processing
geo-textual
Information retrieval
Internet of Things
machine learning
Massive data points
resource efficiency
Sensors
social IoT
Social networking (online)
Social networks
Spatial data
Task analysis
title Resource Efficient Geo-Textual Hierarchical Clustering Framework for Social IoT Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resource%20Efficient%20Geo-Textual%20Hierarchical%20Clustering%20Framework%20for%20Social%20IoT%20Applications&rft.jtitle=IEEE%20sensors%20journal&rft.au=Shuja,%20Junaid&rft.date=2021-11-15&rft.volume=21&rft.issue=22&rft.spage=25114&rft.epage=25122&rft.pages=25114-25122&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3060953&rft_dat=%3Cproquest_RIE%3E2596781853%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596781853&rft_id=info:pmid/&rft_ieee_id=9359746&rfr_iscdi=true