Resource Efficient Geo-Textual Hierarchical Clustering Framework for Social IoT Applications
The Social Internet of Things (SIoT) paradigm incorporates social networking concepts with the Internet of Things (IoT) solutions to support novel services. The massive amount of data (big data) produced by SIoT necessitates efficient information processing frameworks to exploit social relationships...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-11, Vol.21 (22), p.25114-25122 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25122 |
---|---|
container_issue | 22 |
container_start_page | 25114 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Shuja, Junaid Humayun, Mohammad Ali Alasmary, Waleed Sinky, Hassan Alanazi, Eisa Khan, Muhammad Khurram |
description | The Social Internet of Things (SIoT) paradigm incorporates social networking concepts with the Internet of Things (IoT) solutions to support novel services. The massive amount of data (big data) produced by SIoT necessitates efficient information processing frameworks to exploit social relationships and comprehend actionable information from real-world observations. Data from AI-enabled sensors (AIS) is typically geo-tagged, thus demanding geo-textual processing for information retrieval and analysis. Social media applications are the main source of geo-textual data as mobile users connect with millions of posts daily. The processing of big geo-textual data requires resource-efficient algorithms and frameworks. Clustering algorithms are often applied to geo-textual data to examine spatial, textual, and temporal information for event detection, sentiment analysis, and search query response. Clustering algorithms on big data are resource-hungry requiring comparisons among all data points to calculate similarity and distance metrics. Existing hybrid clustering techniques execute algorithms collectively on geo-textual data resulting in a enormous footprint for big data. We propose a resource-efficient clustering framework for AIS that hierarchically performs geo-textual clustering without significantly lowering the clustering quality. The proposed framework achieves substantial time and memory efficiency while reducing the overall resource requirements for constrained end-user and edge devices compared to the standard hybrid geo-textual clustering framework. Moreover, we augment the research work by developing open-source scripts for both hierarchical and hybrid clustering frameworks. |
doi_str_mv | 10.1109/JSEN.2021.3060953 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2596781853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9359746</ieee_id><sourcerecordid>2596781853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6524b8b055399c62388d8ccd49e14fda7a2dec72c6aa2dc5b0dd4b128ad9920d3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2Zj6ZJLsfYlwwFN8ELIaRpqpldU5MW9d-bMvHqvIfzvudwHgCuEZwgBMXd_Xb-MMEQowmBORSUnIARopSniGX8dNAEphlhL-fgIoQ9hEgwykbg9ckE13ttknlVWW1N0yVL49Kd-e56VScra7zy-t3q2MzqPnTG2-YtWXh1MF_OfySV88nWaRvna7dLpm1bR3NnXRMuwVml6mCu_uoYPC_mu9kq3Twu17PpJtVYkC7NKc4KXkBKiRA6x4TzkmtdZsKgrCoVU7g0mmGdq6g0LWBZZgXCXJVCYFiSMbg97m29--xN6OQ-_tTEkxJTkTOOOCXRhY4u7V0I3lSy9fag_I9EUA4Q5QBRDhDlH8SYuTlmrDHm3y8IFSzLyS-aCW6n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596781853</pqid></control><display><type>article</type><title>Resource Efficient Geo-Textual Hierarchical Clustering Framework for Social IoT Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Shuja, Junaid ; Humayun, Mohammad Ali ; Alasmary, Waleed ; Sinky, Hassan ; Alanazi, Eisa ; Khan, Muhammad Khurram</creator><creatorcontrib>Shuja, Junaid ; Humayun, Mohammad Ali ; Alasmary, Waleed ; Sinky, Hassan ; Alanazi, Eisa ; Khan, Muhammad Khurram</creatorcontrib><description>The Social Internet of Things (SIoT) paradigm incorporates social networking concepts with the Internet of Things (IoT) solutions to support novel services. The massive amount of data (big data) produced by SIoT necessitates efficient information processing frameworks to exploit social relationships and comprehend actionable information from real-world observations. Data from AI-enabled sensors (AIS) is typically geo-tagged, thus demanding geo-textual processing for information retrieval and analysis. Social media applications are the main source of geo-textual data as mobile users connect with millions of posts daily. The processing of big geo-textual data requires resource-efficient algorithms and frameworks. Clustering algorithms are often applied to geo-textual data to examine spatial, textual, and temporal information for event detection, sentiment analysis, and search query response. Clustering algorithms on big data are resource-hungry requiring comparisons among all data points to calculate similarity and distance metrics. Existing hybrid clustering techniques execute algorithms collectively on geo-textual data resulting in a enormous footprint for big data. We propose a resource-efficient clustering framework for AIS that hierarchically performs geo-textual clustering without significantly lowering the clustering quality. The proposed framework achieves substantial time and memory efficiency while reducing the overall resource requirements for constrained end-user and edge devices compared to the standard hybrid geo-textual clustering framework. Moreover, we augment the research work by developing open-source scripts for both hierarchical and hybrid clustering frameworks.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3060953</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Big Data ; Cluster analysis ; Clustering ; Clustering algorithms ; Data mining ; Data points ; Data processing ; geo-textual ; Information retrieval ; Internet of Things ; machine learning ; Massive data points ; resource efficiency ; Sensors ; social IoT ; Social networking (online) ; Social networks ; Spatial data ; Task analysis</subject><ispartof>IEEE sensors journal, 2021-11, Vol.21 (22), p.25114-25122</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6524b8b055399c62388d8ccd49e14fda7a2dec72c6aa2dc5b0dd4b128ad9920d3</citedby><cites>FETCH-LOGICAL-c293t-6524b8b055399c62388d8ccd49e14fda7a2dec72c6aa2dc5b0dd4b128ad9920d3</cites><orcidid>0000-0001-6636-0533 ; 0000-0002-4349-144X ; 0000-0002-5560-1116 ; 0000-0002-2649-5860 ; 0000-0003-0726-5311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9359746$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9359746$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shuja, Junaid</creatorcontrib><creatorcontrib>Humayun, Mohammad Ali</creatorcontrib><creatorcontrib>Alasmary, Waleed</creatorcontrib><creatorcontrib>Sinky, Hassan</creatorcontrib><creatorcontrib>Alanazi, Eisa</creatorcontrib><creatorcontrib>Khan, Muhammad Khurram</creatorcontrib><title>Resource Efficient Geo-Textual Hierarchical Clustering Framework for Social IoT Applications</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The Social Internet of Things (SIoT) paradigm incorporates social networking concepts with the Internet of Things (IoT) solutions to support novel services. The massive amount of data (big data) produced by SIoT necessitates efficient information processing frameworks to exploit social relationships and comprehend actionable information from real-world observations. Data from AI-enabled sensors (AIS) is typically geo-tagged, thus demanding geo-textual processing for information retrieval and analysis. Social media applications are the main source of geo-textual data as mobile users connect with millions of posts daily. The processing of big geo-textual data requires resource-efficient algorithms and frameworks. Clustering algorithms are often applied to geo-textual data to examine spatial, textual, and temporal information for event detection, sentiment analysis, and search query response. Clustering algorithms on big data are resource-hungry requiring comparisons among all data points to calculate similarity and distance metrics. Existing hybrid clustering techniques execute algorithms collectively on geo-textual data resulting in a enormous footprint for big data. We propose a resource-efficient clustering framework for AIS that hierarchically performs geo-textual clustering without significantly lowering the clustering quality. The proposed framework achieves substantial time and memory efficiency while reducing the overall resource requirements for constrained end-user and edge devices compared to the standard hybrid geo-textual clustering framework. Moreover, we augment the research work by developing open-source scripts for both hierarchical and hybrid clustering frameworks.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Data mining</subject><subject>Data points</subject><subject>Data processing</subject><subject>geo-textual</subject><subject>Information retrieval</subject><subject>Internet of Things</subject><subject>machine learning</subject><subject>Massive data points</subject><subject>resource efficiency</subject><subject>Sensors</subject><subject>social IoT</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Spatial data</subject><subject>Task analysis</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2Zj6ZJLsfYlwwFN8ELIaRpqpldU5MW9d-bMvHqvIfzvudwHgCuEZwgBMXd_Xb-MMEQowmBORSUnIARopSniGX8dNAEphlhL-fgIoQ9hEgwykbg9ckE13ttknlVWW1N0yVL49Kd-e56VScra7zy-t3q2MzqPnTG2-YtWXh1MF_OfySV88nWaRvna7dLpm1bR3NnXRMuwVml6mCu_uoYPC_mu9kq3Twu17PpJtVYkC7NKc4KXkBKiRA6x4TzkmtdZsKgrCoVU7g0mmGdq6g0LWBZZgXCXJVCYFiSMbg97m29--xN6OQ-_tTEkxJTkTOOOCXRhY4u7V0I3lSy9fag_I9EUA4Q5QBRDhDlH8SYuTlmrDHm3y8IFSzLyS-aCW6n</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Shuja, Junaid</creator><creator>Humayun, Mohammad Ali</creator><creator>Alasmary, Waleed</creator><creator>Sinky, Hassan</creator><creator>Alanazi, Eisa</creator><creator>Khan, Muhammad Khurram</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6636-0533</orcidid><orcidid>https://orcid.org/0000-0002-4349-144X</orcidid><orcidid>https://orcid.org/0000-0002-5560-1116</orcidid><orcidid>https://orcid.org/0000-0002-2649-5860</orcidid><orcidid>https://orcid.org/0000-0003-0726-5311</orcidid></search><sort><creationdate>20211115</creationdate><title>Resource Efficient Geo-Textual Hierarchical Clustering Framework for Social IoT Applications</title><author>Shuja, Junaid ; Humayun, Mohammad Ali ; Alasmary, Waleed ; Sinky, Hassan ; Alanazi, Eisa ; Khan, Muhammad Khurram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6524b8b055399c62388d8ccd49e14fda7a2dec72c6aa2dc5b0dd4b128ad9920d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Data mining</topic><topic>Data points</topic><topic>Data processing</topic><topic>geo-textual</topic><topic>Information retrieval</topic><topic>Internet of Things</topic><topic>machine learning</topic><topic>Massive data points</topic><topic>resource efficiency</topic><topic>Sensors</topic><topic>social IoT</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Spatial data</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shuja, Junaid</creatorcontrib><creatorcontrib>Humayun, Mohammad Ali</creatorcontrib><creatorcontrib>Alasmary, Waleed</creatorcontrib><creatorcontrib>Sinky, Hassan</creatorcontrib><creatorcontrib>Alanazi, Eisa</creatorcontrib><creatorcontrib>Khan, Muhammad Khurram</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shuja, Junaid</au><au>Humayun, Mohammad Ali</au><au>Alasmary, Waleed</au><au>Sinky, Hassan</au><au>Alanazi, Eisa</au><au>Khan, Muhammad Khurram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resource Efficient Geo-Textual Hierarchical Clustering Framework for Social IoT Applications</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-11-15</date><risdate>2021</risdate><volume>21</volume><issue>22</issue><spage>25114</spage><epage>25122</epage><pages>25114-25122</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The Social Internet of Things (SIoT) paradigm incorporates social networking concepts with the Internet of Things (IoT) solutions to support novel services. The massive amount of data (big data) produced by SIoT necessitates efficient information processing frameworks to exploit social relationships and comprehend actionable information from real-world observations. Data from AI-enabled sensors (AIS) is typically geo-tagged, thus demanding geo-textual processing for information retrieval and analysis. Social media applications are the main source of geo-textual data as mobile users connect with millions of posts daily. The processing of big geo-textual data requires resource-efficient algorithms and frameworks. Clustering algorithms are often applied to geo-textual data to examine spatial, textual, and temporal information for event detection, sentiment analysis, and search query response. Clustering algorithms on big data are resource-hungry requiring comparisons among all data points to calculate similarity and distance metrics. Existing hybrid clustering techniques execute algorithms collectively on geo-textual data resulting in a enormous footprint for big data. We propose a resource-efficient clustering framework for AIS that hierarchically performs geo-textual clustering without significantly lowering the clustering quality. The proposed framework achieves substantial time and memory efficiency while reducing the overall resource requirements for constrained end-user and edge devices compared to the standard hybrid geo-textual clustering framework. Moreover, we augment the research work by developing open-source scripts for both hierarchical and hybrid clustering frameworks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3060953</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6636-0533</orcidid><orcidid>https://orcid.org/0000-0002-4349-144X</orcidid><orcidid>https://orcid.org/0000-0002-5560-1116</orcidid><orcidid>https://orcid.org/0000-0002-2649-5860</orcidid><orcidid>https://orcid.org/0000-0003-0726-5311</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-11, Vol.21 (22), p.25114-25122 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2596781853 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial intelligence Big Data Cluster analysis Clustering Clustering algorithms Data mining Data points Data processing geo-textual Information retrieval Internet of Things machine learning Massive data points resource efficiency Sensors social IoT Social networking (online) Social networks Spatial data Task analysis |
title | Resource Efficient Geo-Textual Hierarchical Clustering Framework for Social IoT Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resource%20Efficient%20Geo-Textual%20Hierarchical%20Clustering%20Framework%20for%20Social%20IoT%20Applications&rft.jtitle=IEEE%20sensors%20journal&rft.au=Shuja,%20Junaid&rft.date=2021-11-15&rft.volume=21&rft.issue=22&rft.spage=25114&rft.epage=25122&rft.pages=25114-25122&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3060953&rft_dat=%3Cproquest_RIE%3E2596781853%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596781853&rft_id=info:pmid/&rft_ieee_id=9359746&rfr_iscdi=true |