Physics-Informed Data-Driven Surrogate Modeling for Full-Field 3D Microstructure and Micromechanical Field Evolution of Polycrystalline Materials
We have developed a machine learning-based crystal plasticity surrogate model (CP-SM) that can directly learn highly nonlinear material behavior during plastic deformation. CP-SM provides fast inference of spatially resolved three-dimensional (3D) microstructure and micromechanical fields and their...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2021-11, Vol.73 (11), p.3371-3382 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!