Physics-Informed Data-Driven Surrogate Modeling for Full-Field 3D Microstructure and Micromechanical Field Evolution of Polycrystalline Materials
We have developed a machine learning-based crystal plasticity surrogate model (CP-SM) that can directly learn highly nonlinear material behavior during plastic deformation. CP-SM provides fast inference of spatially resolved three-dimensional (3D) microstructure and micromechanical fields and their...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2021-11, Vol.73 (11), p.3371-3382 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3382 |
---|---|
container_issue | 11 |
container_start_page | 3371 |
container_title | JOM (1989) |
container_volume | 73 |
creator | Pokharel, Reeju Pandey, Anup Scheinker, Alexander |
description | We have developed a machine learning-based crystal plasticity surrogate model (CP-SM) that can directly learn highly nonlinear material behavior during plastic deformation. CP-SM provides fast inference of spatially resolved three-dimensional (3D) microstructure and micromechanical fields and their evolution during plastic deformation, predicting the 22-dimensional material characteristics including a four-dimensional (4D) quaternion-based representation of crystal orientation, six-dimensional (6D) elastic and plastic strain tensors, and 6D stress at each location in the 3D structure. The predictions from CP-SM are orders of magnitude faster than and show good agreement with the deformation fields predicted by performing direct numerical simulations using spectral solvers. The fidelity of the CP-SM is further tested by assessing how well physics-based constraints are satisfied by the predicted 3D fields. We demonstrate our results on numerical simulations of uniaxially loaded copper. |
doi_str_mv | 10.1007/s11837-021-04889-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596637039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596637039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-97811a33b17cb2f8d7734d6bbc3a292d24e57a8be5675680ef195eb077768ecb3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhQdRsFZfwFXAdTSZzEySpfRHCy0W1HXIZDJtSprUZEboY_jGpo7gztW9XL5zDvdk2S1G9xgh-hAxZoRClGOICsY4JGfZCJcFgZiV-DztqKCwYIRdZlcx7lASFRyPsq_19hiNinDhWh_2ugFT2Uk4DeZTO_Dah-A3stNg5RttjduARIF5by2cG20bQKZgZVTwsQu96vqggXTNcNprtZXOKGnBwM4-ve074x3wLVh7e1ThGDtpk28KSCnBSBuvs4s2DX3zO8fZ-3z2NnmGy5enxeRxCRXBvIOcMowlITWmqs5b1lBKiqaqa0VkzvMmL3RJJat1WdGyYki3mJe6RpTSimlVk3F2N_gegv_odezEzvfBpUiRl7yqCEWEJyofqNOPMehWHILZy3AUGIlT9WKoXqTqxU_1giQRGUQxwW6jw5_1P6pvSyuJJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596637039</pqid></control><display><type>article</type><title>Physics-Informed Data-Driven Surrogate Modeling for Full-Field 3D Microstructure and Micromechanical Field Evolution of Polycrystalline Materials</title><source>SpringerNature Journals</source><creator>Pokharel, Reeju ; Pandey, Anup ; Scheinker, Alexander</creator><creatorcontrib>Pokharel, Reeju ; Pandey, Anup ; Scheinker, Alexander</creatorcontrib><description>We have developed a machine learning-based crystal plasticity surrogate model (CP-SM) that can directly learn highly nonlinear material behavior during plastic deformation. CP-SM provides fast inference of spatially resolved three-dimensional (3D) microstructure and micromechanical fields and their evolution during plastic deformation, predicting the 22-dimensional material characteristics including a four-dimensional (4D) quaternion-based representation of crystal orientation, six-dimensional (6D) elastic and plastic strain tensors, and 6D stress at each location in the 3D structure. The predictions from CP-SM are orders of magnitude faster than and show good agreement with the deformation fields predicted by performing direct numerical simulations using spectral solvers. The fidelity of the CP-SM is further tested by assessing how well physics-based constraints are satisfied by the predicted 3D fields. We demonstrate our results on numerical simulations of uniaxially loaded copper.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-021-04889-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Chemistry/Food Science ; Crystal structure ; Datasets ; Deformation ; Direct numerical simulation ; Earth Sciences ; Engineering ; Environment ; Evolution ; Experiments ; Fourier transforms ; Informatics-Enabled Design of Structural Materials ; Inverse problems ; Machine learning ; Mathematical functions ; Mathematical models ; Microstructure ; Neural networks ; Partial differential equations ; Physics ; Plastic deformation ; Quaternions ; Simulation ; Strain ; Tensors</subject><ispartof>JOM (1989), 2021-11, Vol.73 (11), p.3371-3382</ispartof><rights>The Minerals, Metals & Materials Society 2021</rights><rights>Copyright Springer Nature B.V. Nov 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-97811a33b17cb2f8d7734d6bbc3a292d24e57a8be5675680ef195eb077768ecb3</citedby><cites>FETCH-LOGICAL-c319t-97811a33b17cb2f8d7734d6bbc3a292d24e57a8be5675680ef195eb077768ecb3</cites><orcidid>0000-0002-0563-6142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-021-04889-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-021-04889-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pokharel, Reeju</creatorcontrib><creatorcontrib>Pandey, Anup</creatorcontrib><creatorcontrib>Scheinker, Alexander</creatorcontrib><title>Physics-Informed Data-Driven Surrogate Modeling for Full-Field 3D Microstructure and Micromechanical Field Evolution of Polycrystalline Materials</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>We have developed a machine learning-based crystal plasticity surrogate model (CP-SM) that can directly learn highly nonlinear material behavior during plastic deformation. CP-SM provides fast inference of spatially resolved three-dimensional (3D) microstructure and micromechanical fields and their evolution during plastic deformation, predicting the 22-dimensional material characteristics including a four-dimensional (4D) quaternion-based representation of crystal orientation, six-dimensional (6D) elastic and plastic strain tensors, and 6D stress at each location in the 3D structure. The predictions from CP-SM are orders of magnitude faster than and show good agreement with the deformation fields predicted by performing direct numerical simulations using spectral solvers. The fidelity of the CP-SM is further tested by assessing how well physics-based constraints are satisfied by the predicted 3D fields. We demonstrate our results on numerical simulations of uniaxially loaded copper.</description><subject>Chemistry/Food Science</subject><subject>Crystal structure</subject><subject>Datasets</subject><subject>Deformation</subject><subject>Direct numerical simulation</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Evolution</subject><subject>Experiments</subject><subject>Fourier transforms</subject><subject>Informatics-Enabled Design of Structural Materials</subject><subject>Inverse problems</subject><subject>Machine learning</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Neural networks</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Plastic deformation</subject><subject>Quaternions</subject><subject>Simulation</subject><subject>Strain</subject><subject>Tensors</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1KAzEUhQdRsFZfwFXAdTSZzEySpfRHCy0W1HXIZDJtSprUZEboY_jGpo7gztW9XL5zDvdk2S1G9xgh-hAxZoRClGOICsY4JGfZCJcFgZiV-DztqKCwYIRdZlcx7lASFRyPsq_19hiNinDhWh_2ugFT2Uk4DeZTO_Dah-A3stNg5RttjduARIF5by2cG20bQKZgZVTwsQu96vqggXTNcNprtZXOKGnBwM4-ve074x3wLVh7e1ThGDtpk28KSCnBSBuvs4s2DX3zO8fZ-3z2NnmGy5enxeRxCRXBvIOcMowlITWmqs5b1lBKiqaqa0VkzvMmL3RJJat1WdGyYki3mJe6RpTSimlVk3F2N_gegv_odezEzvfBpUiRl7yqCEWEJyofqNOPMehWHILZy3AUGIlT9WKoXqTqxU_1giQRGUQxwW6jw5_1P6pvSyuJJw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Pokharel, Reeju</creator><creator>Pandey, Anup</creator><creator>Scheinker, Alexander</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-0563-6142</orcidid></search><sort><creationdate>20211101</creationdate><title>Physics-Informed Data-Driven Surrogate Modeling for Full-Field 3D Microstructure and Micromechanical Field Evolution of Polycrystalline Materials</title><author>Pokharel, Reeju ; Pandey, Anup ; Scheinker, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-97811a33b17cb2f8d7734d6bbc3a292d24e57a8be5675680ef195eb077768ecb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry/Food Science</topic><topic>Crystal structure</topic><topic>Datasets</topic><topic>Deformation</topic><topic>Direct numerical simulation</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Evolution</topic><topic>Experiments</topic><topic>Fourier transforms</topic><topic>Informatics-Enabled Design of Structural Materials</topic><topic>Inverse problems</topic><topic>Machine learning</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Neural networks</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Plastic deformation</topic><topic>Quaternions</topic><topic>Simulation</topic><topic>Strain</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pokharel, Reeju</creatorcontrib><creatorcontrib>Pandey, Anup</creatorcontrib><creatorcontrib>Scheinker, Alexander</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pokharel, Reeju</au><au>Pandey, Anup</au><au>Scheinker, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-Informed Data-Driven Surrogate Modeling for Full-Field 3D Microstructure and Micromechanical Field Evolution of Polycrystalline Materials</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>73</volume><issue>11</issue><spage>3371</spage><epage>3382</epage><pages>3371-3382</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>We have developed a machine learning-based crystal plasticity surrogate model (CP-SM) that can directly learn highly nonlinear material behavior during plastic deformation. CP-SM provides fast inference of spatially resolved three-dimensional (3D) microstructure and micromechanical fields and their evolution during plastic deformation, predicting the 22-dimensional material characteristics including a four-dimensional (4D) quaternion-based representation of crystal orientation, six-dimensional (6D) elastic and plastic strain tensors, and 6D stress at each location in the 3D structure. The predictions from CP-SM are orders of magnitude faster than and show good agreement with the deformation fields predicted by performing direct numerical simulations using spectral solvers. The fidelity of the CP-SM is further tested by assessing how well physics-based constraints are satisfied by the predicted 3D fields. We demonstrate our results on numerical simulations of uniaxially loaded copper.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-021-04889-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0563-6142</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2021-11, Vol.73 (11), p.3371-3382 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_journals_2596637039 |
source | SpringerNature Journals |
subjects | Chemistry/Food Science Crystal structure Datasets Deformation Direct numerical simulation Earth Sciences Engineering Environment Evolution Experiments Fourier transforms Informatics-Enabled Design of Structural Materials Inverse problems Machine learning Mathematical functions Mathematical models Microstructure Neural networks Partial differential equations Physics Plastic deformation Quaternions Simulation Strain Tensors |
title | Physics-Informed Data-Driven Surrogate Modeling for Full-Field 3D Microstructure and Micromechanical Field Evolution of Polycrystalline Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-Informed%20Data-Driven%20Surrogate%20Modeling%20for%20Full-Field%203D%20Microstructure%20and%20Micromechanical%20Field%20Evolution%20of%20Polycrystalline%20Materials&rft.jtitle=JOM%20(1989)&rft.au=Pokharel,%20Reeju&rft.date=2021-11-01&rft.volume=73&rft.issue=11&rft.spage=3371&rft.epage=3382&rft.pages=3371-3382&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-021-04889-3&rft_dat=%3Cproquest_cross%3E2596637039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596637039&rft_id=info:pmid/&rfr_iscdi=true |