Modified scattering for the nonlinear nonlocal Schrödinger equation in one-dimensional case
We study the large time asymptotics of solutions to the Cauchy problem for the nonlinear nonlocal Schrödinger equation with critical nonlinearity i ∂ t u - ∂ x 2 u + ∂ x 2 u - a ∂ x 4 u = λ u 2 u , t > 0 , x ∈ R , u 0 , x = u 0 x , x ∈ R , where a > 1 5 , λ ∈ R . We continue to develop the fac...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2022-02, Vol.73 (1), Article 2 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the large time asymptotics of solutions to the Cauchy problem for the nonlinear nonlocal Schrödinger equation with critical nonlinearity
i
∂
t
u
-
∂
x
2
u
+
∂
x
2
u
-
a
∂
x
4
u
=
λ
u
2
u
,
t
>
0
,
x
∈
R
,
u
0
,
x
=
u
0
x
,
x
∈
R
,
where
a
>
1
5
,
λ
∈
R
. We continue to develop the factorization techniques which was started in papers Hayashi and Naumkin (Z Angew Math Phys 59(6):1002–1028, 2008) for Klein–Gordon, Hayashi and Naumkin (J Math Phys 56(9):093502, 2015) for a fourth-order Schrödinger, Hayashi and Kaikina (Math Methods Appl Sci 40(5):1573–1597, 2017) for a third-order Schrödinger to show the modified scattering of solutions to the equation. The crucial points of our approach presented here are based on the
L
2
-boundedness of the pseudodifferential operators. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-021-01635-2 |