Stability and instability results for Cauchy laminated Timoshenko-type systems with interfacial slip and a heat conduction of Gurtin–Pipkin’s law
The subject of the present paper is to study the stability of a class of laminated Timoshenko-type systems in the whole line R combined with a heat conduction given by Gurtin–Pipkin’s law and acting only on one equation of the laminated Timoshenko-type system. The main result of this paper shows tha...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2022-02, Vol.73 (1), Article 5 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 73 |
creator | Guesmia, Aissa |
description | The subject of the present paper is to study the stability of a class of laminated Timoshenko-type systems in the whole line
R
combined with a heat conduction given by Gurtin–Pipkin’s law and acting only on one equation of the laminated Timoshenko-type system. The main result of this paper shows that the thermoelastic dissipation generated by Gurtin–Pipkin’s law is strong enough to stabilize the system at least polynomially, even if only the second or the third equation of the laminated Timoshenko-type system is controlled and the two other ones are free. When only the first equation of the laminated Timoshenko-type system is controlled, we give a necessary and sufficient condition for the polynomial stability. The polynomial decays in the
L
2
-norm of the solution, and its higher-order derivatives with respect to the space variable are specified in terms of the regularity of the initial data and some connections between the coefficients. An application to the particular case of Timoshenko-type systems is also given. The proofs are based on the energy method and Fourier analysis combined with some well-chosen weight functions. |
doi_str_mv | 10.1007/s00033-021-01637-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596618892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596618892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3d95e7b11219d0b13334b510c9ca3bbea7004d3766cb7403e882b76fe1ae5f923</originalsourceid><addsrcrecordid>eNp9kM1q3DAUhUVJoJNJXqArQddKriTbGi_LkD8ItNBkLWRZ7mjikVxdmeBd3qF0kdfrk9SZKcmuq3svfOcc7iHkE4dzDqAuEACkZCA4A15JxeADWfBCAKtB1kdkAVAUTAhVfiQniNsZVxzkgvz-nk3je58nakJLfcC3Ozkc-4y0i4muzWg3E-3NzgeTXUvv_S7ixoXHyPI0OIoTZrdD-uTzZnbJLnXGetNT7P2wtzZ040ymNoZ2tNnHQGNHr8eUffjz_OubHx5flxecQ55OyXFnenRn_-aSPFxd3q9v2N3X69v1lztmJa8zk21dOtVwLnjdQsOllEVTcrC1NbJpnFHz261UVWUbVYB0q5VoVNU5blzZ1UIuyeeD75Diz9Fh1ts4pjBHalHWVcVXqz0lDpRNETG5Tg_J70yaNAf9Wr8-1K_n-vW-fg2zSB5EOMPhh0vv1v9R_QWn8YzU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596618892</pqid></control><display><type>article</type><title>Stability and instability results for Cauchy laminated Timoshenko-type systems with interfacial slip and a heat conduction of Gurtin–Pipkin’s law</title><source>SpringerLink Journals</source><creator>Guesmia, Aissa</creator><creatorcontrib>Guesmia, Aissa</creatorcontrib><description>The subject of the present paper is to study the stability of a class of laminated Timoshenko-type systems in the whole line
R
combined with a heat conduction given by Gurtin–Pipkin’s law and acting only on one equation of the laminated Timoshenko-type system. The main result of this paper shows that the thermoelastic dissipation generated by Gurtin–Pipkin’s law is strong enough to stabilize the system at least polynomially, even if only the second or the third equation of the laminated Timoshenko-type system is controlled and the two other ones are free. When only the first equation of the laminated Timoshenko-type system is controlled, we give a necessary and sufficient condition for the polynomial stability. The polynomial decays in the
L
2
-norm of the solution, and its higher-order derivatives with respect to the space variable are specified in terms of the regularity of the initial data and some connections between the coefficients. An application to the particular case of Timoshenko-type systems is also given. The proofs are based on the energy method and Fourier analysis combined with some well-chosen weight functions.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-021-01637-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Conduction heating ; Conductive heat transfer ; Energy methods ; Engineering ; Fourier analysis ; Interface stability ; Mathematical analysis ; Mathematical Methods in Physics ; Polynomials ; Theoretical and Applied Mechanics ; Weighting functions</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2022-02, Vol.73 (1), Article 5</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3d95e7b11219d0b13334b510c9ca3bbea7004d3766cb7403e882b76fe1ae5f923</citedby><cites>FETCH-LOGICAL-c319t-3d95e7b11219d0b13334b510c9ca3bbea7004d3766cb7403e882b76fe1ae5f923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-021-01637-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-021-01637-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Guesmia, Aissa</creatorcontrib><title>Stability and instability results for Cauchy laminated Timoshenko-type systems with interfacial slip and a heat conduction of Gurtin–Pipkin’s law</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>The subject of the present paper is to study the stability of a class of laminated Timoshenko-type systems in the whole line
R
combined with a heat conduction given by Gurtin–Pipkin’s law and acting only on one equation of the laminated Timoshenko-type system. The main result of this paper shows that the thermoelastic dissipation generated by Gurtin–Pipkin’s law is strong enough to stabilize the system at least polynomially, even if only the second or the third equation of the laminated Timoshenko-type system is controlled and the two other ones are free. When only the first equation of the laminated Timoshenko-type system is controlled, we give a necessary and sufficient condition for the polynomial stability. The polynomial decays in the
L
2
-norm of the solution, and its higher-order derivatives with respect to the space variable are specified in terms of the regularity of the initial data and some connections between the coefficients. An application to the particular case of Timoshenko-type systems is also given. The proofs are based on the energy method and Fourier analysis combined with some well-chosen weight functions.</description><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Energy methods</subject><subject>Engineering</subject><subject>Fourier analysis</subject><subject>Interface stability</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Polynomials</subject><subject>Theoretical and Applied Mechanics</subject><subject>Weighting functions</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1q3DAUhUVJoJNJXqArQddKriTbGi_LkD8ItNBkLWRZ7mjikVxdmeBd3qF0kdfrk9SZKcmuq3svfOcc7iHkE4dzDqAuEACkZCA4A15JxeADWfBCAKtB1kdkAVAUTAhVfiQniNsZVxzkgvz-nk3je58nakJLfcC3Ozkc-4y0i4muzWg3E-3NzgeTXUvv_S7ixoXHyPI0OIoTZrdD-uTzZnbJLnXGetNT7P2wtzZ040ymNoZ2tNnHQGNHr8eUffjz_OubHx5flxecQ55OyXFnenRn_-aSPFxd3q9v2N3X69v1lztmJa8zk21dOtVwLnjdQsOllEVTcrC1NbJpnFHz261UVWUbVYB0q5VoVNU5blzZ1UIuyeeD75Diz9Fh1ts4pjBHalHWVcVXqz0lDpRNETG5Tg_J70yaNAf9Wr8-1K_n-vW-fg2zSB5EOMPhh0vv1v9R_QWn8YzU</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Guesmia, Aissa</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220201</creationdate><title>Stability and instability results for Cauchy laminated Timoshenko-type systems with interfacial slip and a heat conduction of Gurtin–Pipkin’s law</title><author>Guesmia, Aissa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3d95e7b11219d0b13334b510c9ca3bbea7004d3766cb7403e882b76fe1ae5f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Energy methods</topic><topic>Engineering</topic><topic>Fourier analysis</topic><topic>Interface stability</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Polynomials</topic><topic>Theoretical and Applied Mechanics</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guesmia, Aissa</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guesmia, Aissa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and instability results for Cauchy laminated Timoshenko-type systems with interfacial slip and a heat conduction of Gurtin–Pipkin’s law</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>73</volume><issue>1</issue><artnum>5</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>The subject of the present paper is to study the stability of a class of laminated Timoshenko-type systems in the whole line
R
combined with a heat conduction given by Gurtin–Pipkin’s law and acting only on one equation of the laminated Timoshenko-type system. The main result of this paper shows that the thermoelastic dissipation generated by Gurtin–Pipkin’s law is strong enough to stabilize the system at least polynomially, even if only the second or the third equation of the laminated Timoshenko-type system is controlled and the two other ones are free. When only the first equation of the laminated Timoshenko-type system is controlled, we give a necessary and sufficient condition for the polynomial stability. The polynomial decays in the
L
2
-norm of the solution, and its higher-order derivatives with respect to the space variable are specified in terms of the regularity of the initial data and some connections between the coefficients. An application to the particular case of Timoshenko-type systems is also given. The proofs are based on the energy method and Fourier analysis combined with some well-chosen weight functions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-021-01637-0</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2022-02, Vol.73 (1), Article 5 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_2596618892 |
source | SpringerLink Journals |
subjects | Conduction heating Conductive heat transfer Energy methods Engineering Fourier analysis Interface stability Mathematical analysis Mathematical Methods in Physics Polynomials Theoretical and Applied Mechanics Weighting functions |
title | Stability and instability results for Cauchy laminated Timoshenko-type systems with interfacial slip and a heat conduction of Gurtin–Pipkin’s law |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20instability%20results%20for%20Cauchy%20laminated%20Timoshenko-type%20systems%20with%20interfacial%20slip%20and%20a%20heat%20conduction%20of%20Gurtin%E2%80%93Pipkin%E2%80%99s%20law&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Guesmia,%20Aissa&rft.date=2022-02-01&rft.volume=73&rft.issue=1&rft.artnum=5&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-021-01637-0&rft_dat=%3Cproquest_cross%3E2596618892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596618892&rft_id=info:pmid/&rfr_iscdi=true |