Reciprocal effect of temperature and dietary lipids on metabolic performance and gut microbiota of Yellowtail kingfish (Seriola lalandi) juveniles

In the present study, the effect of acclimation temperature (20 and 26°C) on the metabolic and physiological performance of yellowtail kingfish (Seriola lalandi) fed different diets (7, 14 and 21% lipid inclusion) was analysed. Fish fed the 14% and 21% lipid inclusion diets (20 and 26°C) had the hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aquaculture research 2021-12, Vol.52 (12), p.6189-6204
Hauptverfasser: Larios‐Soriano, Ernesto, Re‐Araujo, Ana Denise, Gómez‐Gil, Bruno, Tovar Ramírez, Dariel, Trejo‐Escamilla, Idaly, Galaviz, Mario A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6204
container_issue 12
container_start_page 6189
container_title Aquaculture research
container_volume 52
creator Larios‐Soriano, Ernesto
Re‐Araujo, Ana Denise
Gómez‐Gil, Bruno
Tovar Ramírez, Dariel
Trejo‐Escamilla, Idaly
Galaviz, Mario A.
description In the present study, the effect of acclimation temperature (20 and 26°C) on the metabolic and physiological performance of yellowtail kingfish (Seriola lalandi) fed different diets (7, 14 and 21% lipid inclusion) was analysed. Fish fed the 14% and 21% lipid inclusion diets (20 and 26°C) had the highest final weight (80.9 ± 4.2 and 90.0 ± 3.7 g) and specific growth rate (1.4 and 1.7) respectively. Likewise, fish fed the 21% lipid inclusion diet (26°C) had the highest postprandial metabolic rate (430.5 mg O2 h−1 kg−1), the highest ammonium excretion rate (17.8 mg NH4+ h−1 kg−1) and a lower oxygen: nitrogen ratio (10), all reflecting higher protein metabolism. In contrast, fish fed the 7% lipid inclusion diet (26 and 20°C) had the lowest metabolic and physiological performance. Lipid incorporation into the liver parenchyma was higher in organisms fed the diet with 21% lipid inclusion. The composition of the autochthonous microbiota of yellowtail kingfish consisted of the Phylum Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Firmicutes and Cyanobacteria. An increase in the Shannon, observed OTUs, Pielou and Faith_ph indices was observed with respect to the decrease in lipids in the diet (7%). The families with the highest relative abundance identified in the dietary treatments were Rhodobacteraceae (diet with 7%), Propionibacteriaceae (diet with 14%) and Sphingomonadaceae (diet with 21%). With respect to the temperature, at 20°C a higher abundance of Propionibacteriaceae, Flavobacteriaceae, Microbacteriaceae and Caulobacteraceae families were found, while at 26°C, the main families were Rhodobacteraceae, Microbacteriaceae and Xanthomonadaceae.
doi_str_mv 10.1111/are.15480
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596237455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596237455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3320-38bccca3d89e9eee151060206ec9875157592a45eb083f6a484e5a120589beae3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A8ssaGLtHYc57GsKl5SJaQCEqwsx5kUFycudkLV3-CLcQlbZjOj0bkzuhehS0qmNNRMOphSnuTkCI0oS3kUU1IcH2bOI86z11N05v2GEJoQRkfoewVKb51V0mCoa1AdtjXuoNmCk13vAMu2wpWGTro9NnqrK49ti5uwKK3RCgewtq6RrRrYdd_hRitnS207ebj2BsbYXSe1wR-6Xdfav-PrJ3DaGomNNEGlJ3jTf0GrDfhzdFJL4-Hir4_Ry-3N8-I-Wj7ePSzmy0gxFpOI5aVSSrIqL6AAAMopSUlMUlBFnnHKM17EMuFQkpzVqUzyBLikMeF5UYIENkZXw91g_7MH34mN7V0bXoqYF2nMsoTzQE0GKjjy3kEttk43IQxBiThELkLk4jfywM4Gdhd87P8HxXx1Myh-AEgghSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596237455</pqid></control><display><type>article</type><title>Reciprocal effect of temperature and dietary lipids on metabolic performance and gut microbiota of Yellowtail kingfish (Seriola lalandi) juveniles</title><source>Access via Wiley Online Library</source><creator>Larios‐Soriano, Ernesto ; Re‐Araujo, Ana Denise ; Gómez‐Gil, Bruno ; Tovar Ramírez, Dariel ; Trejo‐Escamilla, Idaly ; Galaviz, Mario A.</creator><creatorcontrib>Larios‐Soriano, Ernesto ; Re‐Araujo, Ana Denise ; Gómez‐Gil, Bruno ; Tovar Ramírez, Dariel ; Trejo‐Escamilla, Idaly ; Galaviz, Mario A.</creatorcontrib><description>In the present study, the effect of acclimation temperature (20 and 26°C) on the metabolic and physiological performance of yellowtail kingfish (Seriola lalandi) fed different diets (7, 14 and 21% lipid inclusion) was analysed. Fish fed the 14% and 21% lipid inclusion diets (20 and 26°C) had the highest final weight (80.9 ± 4.2 and 90.0 ± 3.7 g) and specific growth rate (1.4 and 1.7) respectively. Likewise, fish fed the 21% lipid inclusion diet (26°C) had the highest postprandial metabolic rate (430.5 mg O2 h−1 kg−1), the highest ammonium excretion rate (17.8 mg NH4+ h−1 kg−1) and a lower oxygen: nitrogen ratio (10), all reflecting higher protein metabolism. In contrast, fish fed the 7% lipid inclusion diet (26 and 20°C) had the lowest metabolic and physiological performance. Lipid incorporation into the liver parenchyma was higher in organisms fed the diet with 21% lipid inclusion. The composition of the autochthonous microbiota of yellowtail kingfish consisted of the Phylum Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Firmicutes and Cyanobacteria. An increase in the Shannon, observed OTUs, Pielou and Faith_ph indices was observed with respect to the decrease in lipids in the diet (7%). The families with the highest relative abundance identified in the dietary treatments were Rhodobacteraceae (diet with 7%), Propionibacteriaceae (diet with 14%) and Sphingomonadaceae (diet with 21%). With respect to the temperature, at 20°C a higher abundance of Propionibacteriaceae, Flavobacteriaceae, Microbacteriaceae and Caulobacteraceae families were found, while at 26°C, the main families were Rhodobacteraceae, Microbacteriaceae and Xanthomonadaceae.</description><identifier>ISSN: 1355-557X</identifier><identifier>EISSN: 1365-2109</identifier><identifier>DOI: 10.1111/are.15480</identifier><language>eng</language><publisher>Oxford: Hindawi Limited</publisher><subject>Abundance ; Acclimation ; Acclimatization ; ammonia excretion ; Ammonium ; Ammonium compounds ; autochthonous microbiota ; Cyanobacteria ; Diet ; Excretion ; Fish ; growth performance ; Growth rate ; Intestinal flora ; Intestinal microflora ; Juveniles ; Lipid metabolism ; Lipids ; liver parenchyma ; Marine fishes ; Metabolic rate ; Metabolism ; Microbacteriaceae ; Microbiota ; O:N ratio ; Parenchyma ; Physiology ; postprandial metabolic rate ; Propionibacteriaceae ; Protein metabolism ; Protein synthesis ; Protein turnover ; Relative abundance ; Rhodobacteraceae ; Seriola lalandi ; Temperature effects ; Yellowtail</subject><ispartof>Aquaculture research, 2021-12, Vol.52 (12), p.6189-6204</ispartof><rights>2021 John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2021 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3320-38bccca3d89e9eee151060206ec9875157592a45eb083f6a484e5a120589beae3</citedby><cites>FETCH-LOGICAL-c3320-38bccca3d89e9eee151060206ec9875157592a45eb083f6a484e5a120589beae3</cites><orcidid>0000-0002-2499-7349 ; 0000-0003-3472-7489 ; 0000-0003-1204-9576 ; 0000-0002-3695-3597 ; 0000-0002-9639-9866 ; 0000-0002-6274-3024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fare.15480$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fare.15480$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Larios‐Soriano, Ernesto</creatorcontrib><creatorcontrib>Re‐Araujo, Ana Denise</creatorcontrib><creatorcontrib>Gómez‐Gil, Bruno</creatorcontrib><creatorcontrib>Tovar Ramírez, Dariel</creatorcontrib><creatorcontrib>Trejo‐Escamilla, Idaly</creatorcontrib><creatorcontrib>Galaviz, Mario A.</creatorcontrib><title>Reciprocal effect of temperature and dietary lipids on metabolic performance and gut microbiota of Yellowtail kingfish (Seriola lalandi) juveniles</title><title>Aquaculture research</title><description>In the present study, the effect of acclimation temperature (20 and 26°C) on the metabolic and physiological performance of yellowtail kingfish (Seriola lalandi) fed different diets (7, 14 and 21% lipid inclusion) was analysed. Fish fed the 14% and 21% lipid inclusion diets (20 and 26°C) had the highest final weight (80.9 ± 4.2 and 90.0 ± 3.7 g) and specific growth rate (1.4 and 1.7) respectively. Likewise, fish fed the 21% lipid inclusion diet (26°C) had the highest postprandial metabolic rate (430.5 mg O2 h−1 kg−1), the highest ammonium excretion rate (17.8 mg NH4+ h−1 kg−1) and a lower oxygen: nitrogen ratio (10), all reflecting higher protein metabolism. In contrast, fish fed the 7% lipid inclusion diet (26 and 20°C) had the lowest metabolic and physiological performance. Lipid incorporation into the liver parenchyma was higher in organisms fed the diet with 21% lipid inclusion. The composition of the autochthonous microbiota of yellowtail kingfish consisted of the Phylum Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Firmicutes and Cyanobacteria. An increase in the Shannon, observed OTUs, Pielou and Faith_ph indices was observed with respect to the decrease in lipids in the diet (7%). The families with the highest relative abundance identified in the dietary treatments were Rhodobacteraceae (diet with 7%), Propionibacteriaceae (diet with 14%) and Sphingomonadaceae (diet with 21%). With respect to the temperature, at 20°C a higher abundance of Propionibacteriaceae, Flavobacteriaceae, Microbacteriaceae and Caulobacteraceae families were found, while at 26°C, the main families were Rhodobacteraceae, Microbacteriaceae and Xanthomonadaceae.</description><subject>Abundance</subject><subject>Acclimation</subject><subject>Acclimatization</subject><subject>ammonia excretion</subject><subject>Ammonium</subject><subject>Ammonium compounds</subject><subject>autochthonous microbiota</subject><subject>Cyanobacteria</subject><subject>Diet</subject><subject>Excretion</subject><subject>Fish</subject><subject>growth performance</subject><subject>Growth rate</subject><subject>Intestinal flora</subject><subject>Intestinal microflora</subject><subject>Juveniles</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>liver parenchyma</subject><subject>Marine fishes</subject><subject>Metabolic rate</subject><subject>Metabolism</subject><subject>Microbacteriaceae</subject><subject>Microbiota</subject><subject>O:N ratio</subject><subject>Parenchyma</subject><subject>Physiology</subject><subject>postprandial metabolic rate</subject><subject>Propionibacteriaceae</subject><subject>Protein metabolism</subject><subject>Protein synthesis</subject><subject>Protein turnover</subject><subject>Relative abundance</subject><subject>Rhodobacteraceae</subject><subject>Seriola lalandi</subject><subject>Temperature effects</subject><subject>Yellowtail</subject><issn>1355-557X</issn><issn>1365-2109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A8ssaGLtHYc57GsKl5SJaQCEqwsx5kUFycudkLV3-CLcQlbZjOj0bkzuhehS0qmNNRMOphSnuTkCI0oS3kUU1IcH2bOI86z11N05v2GEJoQRkfoewVKb51V0mCoa1AdtjXuoNmCk13vAMu2wpWGTro9NnqrK49ti5uwKK3RCgewtq6RrRrYdd_hRitnS207ebj2BsbYXSe1wR-6Xdfav-PrJ3DaGomNNEGlJ3jTf0GrDfhzdFJL4-Hir4_Ry-3N8-I-Wj7ePSzmy0gxFpOI5aVSSrIqL6AAAMopSUlMUlBFnnHKM17EMuFQkpzVqUzyBLikMeF5UYIENkZXw91g_7MH34mN7V0bXoqYF2nMsoTzQE0GKjjy3kEttk43IQxBiThELkLk4jfywM4Gdhd87P8HxXx1Myh-AEgghSY</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Larios‐Soriano, Ernesto</creator><creator>Re‐Araujo, Ana Denise</creator><creator>Gómez‐Gil, Bruno</creator><creator>Tovar Ramírez, Dariel</creator><creator>Trejo‐Escamilla, Idaly</creator><creator>Galaviz, Mario A.</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-2499-7349</orcidid><orcidid>https://orcid.org/0000-0003-3472-7489</orcidid><orcidid>https://orcid.org/0000-0003-1204-9576</orcidid><orcidid>https://orcid.org/0000-0002-3695-3597</orcidid><orcidid>https://orcid.org/0000-0002-9639-9866</orcidid><orcidid>https://orcid.org/0000-0002-6274-3024</orcidid></search><sort><creationdate>202112</creationdate><title>Reciprocal effect of temperature and dietary lipids on metabolic performance and gut microbiota of Yellowtail kingfish (Seriola lalandi) juveniles</title><author>Larios‐Soriano, Ernesto ; Re‐Araujo, Ana Denise ; Gómez‐Gil, Bruno ; Tovar Ramírez, Dariel ; Trejo‐Escamilla, Idaly ; Galaviz, Mario A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3320-38bccca3d89e9eee151060206ec9875157592a45eb083f6a484e5a120589beae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abundance</topic><topic>Acclimation</topic><topic>Acclimatization</topic><topic>ammonia excretion</topic><topic>Ammonium</topic><topic>Ammonium compounds</topic><topic>autochthonous microbiota</topic><topic>Cyanobacteria</topic><topic>Diet</topic><topic>Excretion</topic><topic>Fish</topic><topic>growth performance</topic><topic>Growth rate</topic><topic>Intestinal flora</topic><topic>Intestinal microflora</topic><topic>Juveniles</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>liver parenchyma</topic><topic>Marine fishes</topic><topic>Metabolic rate</topic><topic>Metabolism</topic><topic>Microbacteriaceae</topic><topic>Microbiota</topic><topic>O:N ratio</topic><topic>Parenchyma</topic><topic>Physiology</topic><topic>postprandial metabolic rate</topic><topic>Propionibacteriaceae</topic><topic>Protein metabolism</topic><topic>Protein synthesis</topic><topic>Protein turnover</topic><topic>Relative abundance</topic><topic>Rhodobacteraceae</topic><topic>Seriola lalandi</topic><topic>Temperature effects</topic><topic>Yellowtail</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larios‐Soriano, Ernesto</creatorcontrib><creatorcontrib>Re‐Araujo, Ana Denise</creatorcontrib><creatorcontrib>Gómez‐Gil, Bruno</creatorcontrib><creatorcontrib>Tovar Ramírez, Dariel</creatorcontrib><creatorcontrib>Trejo‐Escamilla, Idaly</creatorcontrib><creatorcontrib>Galaviz, Mario A.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Aquaculture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larios‐Soriano, Ernesto</au><au>Re‐Araujo, Ana Denise</au><au>Gómez‐Gil, Bruno</au><au>Tovar Ramírez, Dariel</au><au>Trejo‐Escamilla, Idaly</au><au>Galaviz, Mario A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reciprocal effect of temperature and dietary lipids on metabolic performance and gut microbiota of Yellowtail kingfish (Seriola lalandi) juveniles</atitle><jtitle>Aquaculture research</jtitle><date>2021-12</date><risdate>2021</risdate><volume>52</volume><issue>12</issue><spage>6189</spage><epage>6204</epage><pages>6189-6204</pages><issn>1355-557X</issn><eissn>1365-2109</eissn><abstract>In the present study, the effect of acclimation temperature (20 and 26°C) on the metabolic and physiological performance of yellowtail kingfish (Seriola lalandi) fed different diets (7, 14 and 21% lipid inclusion) was analysed. Fish fed the 14% and 21% lipid inclusion diets (20 and 26°C) had the highest final weight (80.9 ± 4.2 and 90.0 ± 3.7 g) and specific growth rate (1.4 and 1.7) respectively. Likewise, fish fed the 21% lipid inclusion diet (26°C) had the highest postprandial metabolic rate (430.5 mg O2 h−1 kg−1), the highest ammonium excretion rate (17.8 mg NH4+ h−1 kg−1) and a lower oxygen: nitrogen ratio (10), all reflecting higher protein metabolism. In contrast, fish fed the 7% lipid inclusion diet (26 and 20°C) had the lowest metabolic and physiological performance. Lipid incorporation into the liver parenchyma was higher in organisms fed the diet with 21% lipid inclusion. The composition of the autochthonous microbiota of yellowtail kingfish consisted of the Phylum Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Firmicutes and Cyanobacteria. An increase in the Shannon, observed OTUs, Pielou and Faith_ph indices was observed with respect to the decrease in lipids in the diet (7%). The families with the highest relative abundance identified in the dietary treatments were Rhodobacteraceae (diet with 7%), Propionibacteriaceae (diet with 14%) and Sphingomonadaceae (diet with 21%). With respect to the temperature, at 20°C a higher abundance of Propionibacteriaceae, Flavobacteriaceae, Microbacteriaceae and Caulobacteraceae families were found, while at 26°C, the main families were Rhodobacteraceae, Microbacteriaceae and Xanthomonadaceae.</abstract><cop>Oxford</cop><pub>Hindawi Limited</pub><doi>10.1111/are.15480</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2499-7349</orcidid><orcidid>https://orcid.org/0000-0003-3472-7489</orcidid><orcidid>https://orcid.org/0000-0003-1204-9576</orcidid><orcidid>https://orcid.org/0000-0002-3695-3597</orcidid><orcidid>https://orcid.org/0000-0002-9639-9866</orcidid><orcidid>https://orcid.org/0000-0002-6274-3024</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1355-557X
ispartof Aquaculture research, 2021-12, Vol.52 (12), p.6189-6204
issn 1355-557X
1365-2109
language eng
recordid cdi_proquest_journals_2596237455
source Access via Wiley Online Library
subjects Abundance
Acclimation
Acclimatization
ammonia excretion
Ammonium
Ammonium compounds
autochthonous microbiota
Cyanobacteria
Diet
Excretion
Fish
growth performance
Growth rate
Intestinal flora
Intestinal microflora
Juveniles
Lipid metabolism
Lipids
liver parenchyma
Marine fishes
Metabolic rate
Metabolism
Microbacteriaceae
Microbiota
O:N ratio
Parenchyma
Physiology
postprandial metabolic rate
Propionibacteriaceae
Protein metabolism
Protein synthesis
Protein turnover
Relative abundance
Rhodobacteraceae
Seriola lalandi
Temperature effects
Yellowtail
title Reciprocal effect of temperature and dietary lipids on metabolic performance and gut microbiota of Yellowtail kingfish (Seriola lalandi) juveniles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A06%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reciprocal%20effect%20of%20temperature%20and%20dietary%20lipids%20on%20metabolic%20performance%20and%20gut%20microbiota%20of%20Yellowtail%20kingfish%20(Seriola%20lalandi)%20juveniles&rft.jtitle=Aquaculture%20research&rft.au=Larios%E2%80%90Soriano,%20Ernesto&rft.date=2021-12&rft.volume=52&rft.issue=12&rft.spage=6189&rft.epage=6204&rft.pages=6189-6204&rft.issn=1355-557X&rft.eissn=1365-2109&rft_id=info:doi/10.1111/are.15480&rft_dat=%3Cproquest_cross%3E2596237455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596237455&rft_id=info:pmid/&rfr_iscdi=true