Reciprocal effect of temperature and dietary lipids on metabolic performance and gut microbiota of Yellowtail kingfish (Seriola lalandi) juveniles
In the present study, the effect of acclimation temperature (20 and 26°C) on the metabolic and physiological performance of yellowtail kingfish (Seriola lalandi) fed different diets (7, 14 and 21% lipid inclusion) was analysed. Fish fed the 14% and 21% lipid inclusion diets (20 and 26°C) had the hig...
Gespeichert in:
Veröffentlicht in: | Aquaculture research 2021-12, Vol.52 (12), p.6189-6204 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6204 |
---|---|
container_issue | 12 |
container_start_page | 6189 |
container_title | Aquaculture research |
container_volume | 52 |
creator | Larios‐Soriano, Ernesto Re‐Araujo, Ana Denise Gómez‐Gil, Bruno Tovar Ramírez, Dariel Trejo‐Escamilla, Idaly Galaviz, Mario A. |
description | In the present study, the effect of acclimation temperature (20 and 26°C) on the metabolic and physiological performance of yellowtail kingfish (Seriola lalandi) fed different diets (7, 14 and 21% lipid inclusion) was analysed. Fish fed the 14% and 21% lipid inclusion diets (20 and 26°C) had the highest final weight (80.9 ± 4.2 and 90.0 ± 3.7 g) and specific growth rate (1.4 and 1.7) respectively. Likewise, fish fed the 21% lipid inclusion diet (26°C) had the highest postprandial metabolic rate (430.5 mg O2 h−1 kg−1), the highest ammonium excretion rate (17.8 mg NH4+ h−1 kg−1) and a lower oxygen: nitrogen ratio (10), all reflecting higher protein metabolism. In contrast, fish fed the 7% lipid inclusion diet (26 and 20°C) had the lowest metabolic and physiological performance. Lipid incorporation into the liver parenchyma was higher in organisms fed the diet with 21% lipid inclusion. The composition of the autochthonous microbiota of yellowtail kingfish consisted of the Phylum Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Firmicutes and Cyanobacteria. An increase in the Shannon, observed OTUs, Pielou and Faith_ph indices was observed with respect to the decrease in lipids in the diet (7%). The families with the highest relative abundance identified in the dietary treatments were Rhodobacteraceae (diet with 7%), Propionibacteriaceae (diet with 14%) and Sphingomonadaceae (diet with 21%). With respect to the temperature, at 20°C a higher abundance of Propionibacteriaceae, Flavobacteriaceae, Microbacteriaceae and Caulobacteraceae families were found, while at 26°C, the main families were Rhodobacteraceae, Microbacteriaceae and Xanthomonadaceae. |
doi_str_mv | 10.1111/are.15480 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596237455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596237455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3320-38bccca3d89e9eee151060206ec9875157592a45eb083f6a484e5a120589beae3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A8ssaGLtHYc57GsKl5SJaQCEqwsx5kUFycudkLV3-CLcQlbZjOj0bkzuhehS0qmNNRMOphSnuTkCI0oS3kUU1IcH2bOI86z11N05v2GEJoQRkfoewVKb51V0mCoa1AdtjXuoNmCk13vAMu2wpWGTro9NnqrK49ti5uwKK3RCgewtq6RrRrYdd_hRitnS207ebj2BsbYXSe1wR-6Xdfav-PrJ3DaGomNNEGlJ3jTf0GrDfhzdFJL4-Hir4_Ry-3N8-I-Wj7ePSzmy0gxFpOI5aVSSrIqL6AAAMopSUlMUlBFnnHKM17EMuFQkpzVqUzyBLikMeF5UYIENkZXw91g_7MH34mN7V0bXoqYF2nMsoTzQE0GKjjy3kEttk43IQxBiThELkLk4jfywM4Gdhd87P8HxXx1Myh-AEgghSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596237455</pqid></control><display><type>article</type><title>Reciprocal effect of temperature and dietary lipids on metabolic performance and gut microbiota of Yellowtail kingfish (Seriola lalandi) juveniles</title><source>Access via Wiley Online Library</source><creator>Larios‐Soriano, Ernesto ; Re‐Araujo, Ana Denise ; Gómez‐Gil, Bruno ; Tovar Ramírez, Dariel ; Trejo‐Escamilla, Idaly ; Galaviz, Mario A.</creator><creatorcontrib>Larios‐Soriano, Ernesto ; Re‐Araujo, Ana Denise ; Gómez‐Gil, Bruno ; Tovar Ramírez, Dariel ; Trejo‐Escamilla, Idaly ; Galaviz, Mario A.</creatorcontrib><description>In the present study, the effect of acclimation temperature (20 and 26°C) on the metabolic and physiological performance of yellowtail kingfish (Seriola lalandi) fed different diets (7, 14 and 21% lipid inclusion) was analysed. Fish fed the 14% and 21% lipid inclusion diets (20 and 26°C) had the highest final weight (80.9 ± 4.2 and 90.0 ± 3.7 g) and specific growth rate (1.4 and 1.7) respectively. Likewise, fish fed the 21% lipid inclusion diet (26°C) had the highest postprandial metabolic rate (430.5 mg O2 h−1 kg−1), the highest ammonium excretion rate (17.8 mg NH4+ h−1 kg−1) and a lower oxygen: nitrogen ratio (10), all reflecting higher protein metabolism. In contrast, fish fed the 7% lipid inclusion diet (26 and 20°C) had the lowest metabolic and physiological performance. Lipid incorporation into the liver parenchyma was higher in organisms fed the diet with 21% lipid inclusion. The composition of the autochthonous microbiota of yellowtail kingfish consisted of the Phylum Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Firmicutes and Cyanobacteria. An increase in the Shannon, observed OTUs, Pielou and Faith_ph indices was observed with respect to the decrease in lipids in the diet (7%). The families with the highest relative abundance identified in the dietary treatments were Rhodobacteraceae (diet with 7%), Propionibacteriaceae (diet with 14%) and Sphingomonadaceae (diet with 21%). With respect to the temperature, at 20°C a higher abundance of Propionibacteriaceae, Flavobacteriaceae, Microbacteriaceae and Caulobacteraceae families were found, while at 26°C, the main families were Rhodobacteraceae, Microbacteriaceae and Xanthomonadaceae.</description><identifier>ISSN: 1355-557X</identifier><identifier>EISSN: 1365-2109</identifier><identifier>DOI: 10.1111/are.15480</identifier><language>eng</language><publisher>Oxford: Hindawi Limited</publisher><subject>Abundance ; Acclimation ; Acclimatization ; ammonia excretion ; Ammonium ; Ammonium compounds ; autochthonous microbiota ; Cyanobacteria ; Diet ; Excretion ; Fish ; growth performance ; Growth rate ; Intestinal flora ; Intestinal microflora ; Juveniles ; Lipid metabolism ; Lipids ; liver parenchyma ; Marine fishes ; Metabolic rate ; Metabolism ; Microbacteriaceae ; Microbiota ; O:N ratio ; Parenchyma ; Physiology ; postprandial metabolic rate ; Propionibacteriaceae ; Protein metabolism ; Protein synthesis ; Protein turnover ; Relative abundance ; Rhodobacteraceae ; Seriola lalandi ; Temperature effects ; Yellowtail</subject><ispartof>Aquaculture research, 2021-12, Vol.52 (12), p.6189-6204</ispartof><rights>2021 John Wiley & Sons Ltd</rights><rights>Copyright © 2021 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3320-38bccca3d89e9eee151060206ec9875157592a45eb083f6a484e5a120589beae3</citedby><cites>FETCH-LOGICAL-c3320-38bccca3d89e9eee151060206ec9875157592a45eb083f6a484e5a120589beae3</cites><orcidid>0000-0002-2499-7349 ; 0000-0003-3472-7489 ; 0000-0003-1204-9576 ; 0000-0002-3695-3597 ; 0000-0002-9639-9866 ; 0000-0002-6274-3024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fare.15480$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fare.15480$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Larios‐Soriano, Ernesto</creatorcontrib><creatorcontrib>Re‐Araujo, Ana Denise</creatorcontrib><creatorcontrib>Gómez‐Gil, Bruno</creatorcontrib><creatorcontrib>Tovar Ramírez, Dariel</creatorcontrib><creatorcontrib>Trejo‐Escamilla, Idaly</creatorcontrib><creatorcontrib>Galaviz, Mario A.</creatorcontrib><title>Reciprocal effect of temperature and dietary lipids on metabolic performance and gut microbiota of Yellowtail kingfish (Seriola lalandi) juveniles</title><title>Aquaculture research</title><description>In the present study, the effect of acclimation temperature (20 and 26°C) on the metabolic and physiological performance of yellowtail kingfish (Seriola lalandi) fed different diets (7, 14 and 21% lipid inclusion) was analysed. Fish fed the 14% and 21% lipid inclusion diets (20 and 26°C) had the highest final weight (80.9 ± 4.2 and 90.0 ± 3.7 g) and specific growth rate (1.4 and 1.7) respectively. Likewise, fish fed the 21% lipid inclusion diet (26°C) had the highest postprandial metabolic rate (430.5 mg O2 h−1 kg−1), the highest ammonium excretion rate (17.8 mg NH4+ h−1 kg−1) and a lower oxygen: nitrogen ratio (10), all reflecting higher protein metabolism. In contrast, fish fed the 7% lipid inclusion diet (26 and 20°C) had the lowest metabolic and physiological performance. Lipid incorporation into the liver parenchyma was higher in organisms fed the diet with 21% lipid inclusion. The composition of the autochthonous microbiota of yellowtail kingfish consisted of the Phylum Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Firmicutes and Cyanobacteria. An increase in the Shannon, observed OTUs, Pielou and Faith_ph indices was observed with respect to the decrease in lipids in the diet (7%). The families with the highest relative abundance identified in the dietary treatments were Rhodobacteraceae (diet with 7%), Propionibacteriaceae (diet with 14%) and Sphingomonadaceae (diet with 21%). With respect to the temperature, at 20°C a higher abundance of Propionibacteriaceae, Flavobacteriaceae, Microbacteriaceae and Caulobacteraceae families were found, while at 26°C, the main families were Rhodobacteraceae, Microbacteriaceae and Xanthomonadaceae.</description><subject>Abundance</subject><subject>Acclimation</subject><subject>Acclimatization</subject><subject>ammonia excretion</subject><subject>Ammonium</subject><subject>Ammonium compounds</subject><subject>autochthonous microbiota</subject><subject>Cyanobacteria</subject><subject>Diet</subject><subject>Excretion</subject><subject>Fish</subject><subject>growth performance</subject><subject>Growth rate</subject><subject>Intestinal flora</subject><subject>Intestinal microflora</subject><subject>Juveniles</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>liver parenchyma</subject><subject>Marine fishes</subject><subject>Metabolic rate</subject><subject>Metabolism</subject><subject>Microbacteriaceae</subject><subject>Microbiota</subject><subject>O:N ratio</subject><subject>Parenchyma</subject><subject>Physiology</subject><subject>postprandial metabolic rate</subject><subject>Propionibacteriaceae</subject><subject>Protein metabolism</subject><subject>Protein synthesis</subject><subject>Protein turnover</subject><subject>Relative abundance</subject><subject>Rhodobacteraceae</subject><subject>Seriola lalandi</subject><subject>Temperature effects</subject><subject>Yellowtail</subject><issn>1355-557X</issn><issn>1365-2109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A8ssaGLtHYc57GsKl5SJaQCEqwsx5kUFycudkLV3-CLcQlbZjOj0bkzuhehS0qmNNRMOphSnuTkCI0oS3kUU1IcH2bOI86z11N05v2GEJoQRkfoewVKb51V0mCoa1AdtjXuoNmCk13vAMu2wpWGTro9NnqrK49ti5uwKK3RCgewtq6RrRrYdd_hRitnS207ebj2BsbYXSe1wR-6Xdfav-PrJ3DaGomNNEGlJ3jTf0GrDfhzdFJL4-Hir4_Ry-3N8-I-Wj7ePSzmy0gxFpOI5aVSSrIqL6AAAMopSUlMUlBFnnHKM17EMuFQkpzVqUzyBLikMeF5UYIENkZXw91g_7MH34mN7V0bXoqYF2nMsoTzQE0GKjjy3kEttk43IQxBiThELkLk4jfywM4Gdhd87P8HxXx1Myh-AEgghSY</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Larios‐Soriano, Ernesto</creator><creator>Re‐Araujo, Ana Denise</creator><creator>Gómez‐Gil, Bruno</creator><creator>Tovar Ramírez, Dariel</creator><creator>Trejo‐Escamilla, Idaly</creator><creator>Galaviz, Mario A.</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-2499-7349</orcidid><orcidid>https://orcid.org/0000-0003-3472-7489</orcidid><orcidid>https://orcid.org/0000-0003-1204-9576</orcidid><orcidid>https://orcid.org/0000-0002-3695-3597</orcidid><orcidid>https://orcid.org/0000-0002-9639-9866</orcidid><orcidid>https://orcid.org/0000-0002-6274-3024</orcidid></search><sort><creationdate>202112</creationdate><title>Reciprocal effect of temperature and dietary lipids on metabolic performance and gut microbiota of Yellowtail kingfish (Seriola lalandi) juveniles</title><author>Larios‐Soriano, Ernesto ; Re‐Araujo, Ana Denise ; Gómez‐Gil, Bruno ; Tovar Ramírez, Dariel ; Trejo‐Escamilla, Idaly ; Galaviz, Mario A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3320-38bccca3d89e9eee151060206ec9875157592a45eb083f6a484e5a120589beae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abundance</topic><topic>Acclimation</topic><topic>Acclimatization</topic><topic>ammonia excretion</topic><topic>Ammonium</topic><topic>Ammonium compounds</topic><topic>autochthonous microbiota</topic><topic>Cyanobacteria</topic><topic>Diet</topic><topic>Excretion</topic><topic>Fish</topic><topic>growth performance</topic><topic>Growth rate</topic><topic>Intestinal flora</topic><topic>Intestinal microflora</topic><topic>Juveniles</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>liver parenchyma</topic><topic>Marine fishes</topic><topic>Metabolic rate</topic><topic>Metabolism</topic><topic>Microbacteriaceae</topic><topic>Microbiota</topic><topic>O:N ratio</topic><topic>Parenchyma</topic><topic>Physiology</topic><topic>postprandial metabolic rate</topic><topic>Propionibacteriaceae</topic><topic>Protein metabolism</topic><topic>Protein synthesis</topic><topic>Protein turnover</topic><topic>Relative abundance</topic><topic>Rhodobacteraceae</topic><topic>Seriola lalandi</topic><topic>Temperature effects</topic><topic>Yellowtail</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larios‐Soriano, Ernesto</creatorcontrib><creatorcontrib>Re‐Araujo, Ana Denise</creatorcontrib><creatorcontrib>Gómez‐Gil, Bruno</creatorcontrib><creatorcontrib>Tovar Ramírez, Dariel</creatorcontrib><creatorcontrib>Trejo‐Escamilla, Idaly</creatorcontrib><creatorcontrib>Galaviz, Mario A.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Aquaculture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larios‐Soriano, Ernesto</au><au>Re‐Araujo, Ana Denise</au><au>Gómez‐Gil, Bruno</au><au>Tovar Ramírez, Dariel</au><au>Trejo‐Escamilla, Idaly</au><au>Galaviz, Mario A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reciprocal effect of temperature and dietary lipids on metabolic performance and gut microbiota of Yellowtail kingfish (Seriola lalandi) juveniles</atitle><jtitle>Aquaculture research</jtitle><date>2021-12</date><risdate>2021</risdate><volume>52</volume><issue>12</issue><spage>6189</spage><epage>6204</epage><pages>6189-6204</pages><issn>1355-557X</issn><eissn>1365-2109</eissn><abstract>In the present study, the effect of acclimation temperature (20 and 26°C) on the metabolic and physiological performance of yellowtail kingfish (Seriola lalandi) fed different diets (7, 14 and 21% lipid inclusion) was analysed. Fish fed the 14% and 21% lipid inclusion diets (20 and 26°C) had the highest final weight (80.9 ± 4.2 and 90.0 ± 3.7 g) and specific growth rate (1.4 and 1.7) respectively. Likewise, fish fed the 21% lipid inclusion diet (26°C) had the highest postprandial metabolic rate (430.5 mg O2 h−1 kg−1), the highest ammonium excretion rate (17.8 mg NH4+ h−1 kg−1) and a lower oxygen: nitrogen ratio (10), all reflecting higher protein metabolism. In contrast, fish fed the 7% lipid inclusion diet (26 and 20°C) had the lowest metabolic and physiological performance. Lipid incorporation into the liver parenchyma was higher in organisms fed the diet with 21% lipid inclusion. The composition of the autochthonous microbiota of yellowtail kingfish consisted of the Phylum Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Firmicutes and Cyanobacteria. An increase in the Shannon, observed OTUs, Pielou and Faith_ph indices was observed with respect to the decrease in lipids in the diet (7%). The families with the highest relative abundance identified in the dietary treatments were Rhodobacteraceae (diet with 7%), Propionibacteriaceae (diet with 14%) and Sphingomonadaceae (diet with 21%). With respect to the temperature, at 20°C a higher abundance of Propionibacteriaceae, Flavobacteriaceae, Microbacteriaceae and Caulobacteraceae families were found, while at 26°C, the main families were Rhodobacteraceae, Microbacteriaceae and Xanthomonadaceae.</abstract><cop>Oxford</cop><pub>Hindawi Limited</pub><doi>10.1111/are.15480</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2499-7349</orcidid><orcidid>https://orcid.org/0000-0003-3472-7489</orcidid><orcidid>https://orcid.org/0000-0003-1204-9576</orcidid><orcidid>https://orcid.org/0000-0002-3695-3597</orcidid><orcidid>https://orcid.org/0000-0002-9639-9866</orcidid><orcidid>https://orcid.org/0000-0002-6274-3024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1355-557X |
ispartof | Aquaculture research, 2021-12, Vol.52 (12), p.6189-6204 |
issn | 1355-557X 1365-2109 |
language | eng |
recordid | cdi_proquest_journals_2596237455 |
source | Access via Wiley Online Library |
subjects | Abundance Acclimation Acclimatization ammonia excretion Ammonium Ammonium compounds autochthonous microbiota Cyanobacteria Diet Excretion Fish growth performance Growth rate Intestinal flora Intestinal microflora Juveniles Lipid metabolism Lipids liver parenchyma Marine fishes Metabolic rate Metabolism Microbacteriaceae Microbiota O:N ratio Parenchyma Physiology postprandial metabolic rate Propionibacteriaceae Protein metabolism Protein synthesis Protein turnover Relative abundance Rhodobacteraceae Seriola lalandi Temperature effects Yellowtail |
title | Reciprocal effect of temperature and dietary lipids on metabolic performance and gut microbiota of Yellowtail kingfish (Seriola lalandi) juveniles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A06%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reciprocal%20effect%20of%20temperature%20and%20dietary%20lipids%20on%20metabolic%20performance%20and%20gut%20microbiota%20of%20Yellowtail%20kingfish%20(Seriola%20lalandi)%20juveniles&rft.jtitle=Aquaculture%20research&rft.au=Larios%E2%80%90Soriano,%20Ernesto&rft.date=2021-12&rft.volume=52&rft.issue=12&rft.spage=6189&rft.epage=6204&rft.pages=6189-6204&rft.issn=1355-557X&rft.eissn=1365-2109&rft_id=info:doi/10.1111/are.15480&rft_dat=%3Cproquest_cross%3E2596237455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596237455&rft_id=info:pmid/&rfr_iscdi=true |