Weak imposition of Dirichlet boundary conditions for analyses using Powell–Sabin B‐splines
Powell–Sabin B‐splines are enjoying an increased use in the analysis of solids and fluids, including fracture propagation. However, the Powell–Sabin B‐spline interpolation does not hold the Kronecker delta property and, therefore, the imposition of Dirichlet boundary conditions is not as straightfor...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2021-12, Vol.122 (23), p.6888-6904 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6904 |
---|---|
container_issue | 23 |
container_start_page | 6888 |
container_title | International journal for numerical methods in engineering |
container_volume | 122 |
creator | Chen, Lin Borst, René de |
description | Powell–Sabin B‐splines are enjoying an increased use in the analysis of solids and fluids, including fracture propagation. However, the Powell–Sabin B‐spline interpolation does not hold the Kronecker delta property and, therefore, the imposition of Dirichlet boundary conditions is not as straightforward as for the standard finite elements. Herein, we discuss the applicability of various approaches developed to date for the weak imposition of Dirichlet boundary conditions in analyses which employ Powell–Sabin B‐splines. We take elasticity and fracture propagation using phase‐field modeling as a benchmark problem. We first succinctly recapitulate the phase‐field model for propagation of brittle fracture, which encapsulates linear elasticity, and its discretization using Powell–Sabin B‐splines. As baseline solution we impose Dirichlet boundary conditions in a strong sense, and use this to benchmark the Lagrange multiplier, penalty, and Nitsche's methods, as well as methods based on the Hellinger‐Reissner principle, and the linked Lagrange multiplier method and its modified version. |
doi_str_mv | 10.1002/nme.6815 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596217164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596217164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3275-f5e86a412c866b8697e48e4a131a4245828f685ea7bc3264adb354a20bcdc9333</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJsR3bcZZQykMqDwkQOyzHccAltYPdqOqun4DEH_ZLSFu2rGZxzx3NHACOMRpghMiZm5oBF5jtgB5GeZYggrJd0OuiPGG5wPvgIMYJQhgzlPbA26tRn9BOGx_tzHoHfQUvbbD6ozYzWPjWlSosoPau3OQRVj5A5VS9iCbCNlr3Dh_93NT1avnzpArr4MVq-R2b2joTD8Fepepojv5mH7xcjZ6HN8n44fp2eD5OdEoyllTMCK4oJlpwXgieZ4YKQxVOsaKEMkFExQUzKiu6AqeqLFJGFUGFLnWepmkfnGz3NsF_tSbO5MS3obsySsJyTnCGOe2o0y2lg48xmEo2wU67_yRGcm1Pdvbk2l6HJlt0bmuz-JeT93ejDf8L1xFysA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596217164</pqid></control><display><type>article</type><title>Weak imposition of Dirichlet boundary conditions for analyses using Powell–Sabin B‐splines</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Lin ; Borst, René de</creator><creatorcontrib>Chen, Lin ; Borst, René de</creatorcontrib><description>Powell–Sabin B‐splines are enjoying an increased use in the analysis of solids and fluids, including fracture propagation. However, the Powell–Sabin B‐spline interpolation does not hold the Kronecker delta property and, therefore, the imposition of Dirichlet boundary conditions is not as straightforward as for the standard finite elements. Herein, we discuss the applicability of various approaches developed to date for the weak imposition of Dirichlet boundary conditions in analyses which employ Powell–Sabin B‐splines. We take elasticity and fracture propagation using phase‐field modeling as a benchmark problem. We first succinctly recapitulate the phase‐field model for propagation of brittle fracture, which encapsulates linear elasticity, and its discretization using Powell–Sabin B‐splines. As baseline solution we impose Dirichlet boundary conditions in a strong sense, and use this to benchmark the Lagrange multiplier, penalty, and Nitsche's methods, as well as methods based on the Hellinger‐Reissner principle, and the linked Lagrange multiplier method and its modified version.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6815</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Benchmarks ; Boundary conditions ; Crack propagation ; Dirichlet boundary conditions ; Dirichlet problem ; Elasticity ; fracture ; Fracture mechanics ; Interpolation ; Lagrange multiplier ; Powell–Sabin B‐splines ; Propagation ; weak imposition</subject><ispartof>International journal for numerical methods in engineering, 2021-12, Vol.122 (23), p.6888-6904</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3275-f5e86a412c866b8697e48e4a131a4245828f685ea7bc3264adb354a20bcdc9333</citedby><cites>FETCH-LOGICAL-c3275-f5e86a412c866b8697e48e4a131a4245828f685ea7bc3264adb354a20bcdc9333</cites><orcidid>0000-0002-3457-3574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.6815$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.6815$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Borst, René de</creatorcontrib><title>Weak imposition of Dirichlet boundary conditions for analyses using Powell–Sabin B‐splines</title><title>International journal for numerical methods in engineering</title><description>Powell–Sabin B‐splines are enjoying an increased use in the analysis of solids and fluids, including fracture propagation. However, the Powell–Sabin B‐spline interpolation does not hold the Kronecker delta property and, therefore, the imposition of Dirichlet boundary conditions is not as straightforward as for the standard finite elements. Herein, we discuss the applicability of various approaches developed to date for the weak imposition of Dirichlet boundary conditions in analyses which employ Powell–Sabin B‐splines. We take elasticity and fracture propagation using phase‐field modeling as a benchmark problem. We first succinctly recapitulate the phase‐field model for propagation of brittle fracture, which encapsulates linear elasticity, and its discretization using Powell–Sabin B‐splines. As baseline solution we impose Dirichlet boundary conditions in a strong sense, and use this to benchmark the Lagrange multiplier, penalty, and Nitsche's methods, as well as methods based on the Hellinger‐Reissner principle, and the linked Lagrange multiplier method and its modified version.</description><subject>Benchmarks</subject><subject>Boundary conditions</subject><subject>Crack propagation</subject><subject>Dirichlet boundary conditions</subject><subject>Dirichlet problem</subject><subject>Elasticity</subject><subject>fracture</subject><subject>Fracture mechanics</subject><subject>Interpolation</subject><subject>Lagrange multiplier</subject><subject>Powell–Sabin B‐splines</subject><subject>Propagation</subject><subject>weak imposition</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJsR3bcZZQykMqDwkQOyzHccAltYPdqOqun4DEH_ZLSFu2rGZxzx3NHACOMRpghMiZm5oBF5jtgB5GeZYggrJd0OuiPGG5wPvgIMYJQhgzlPbA26tRn9BOGx_tzHoHfQUvbbD6ozYzWPjWlSosoPau3OQRVj5A5VS9iCbCNlr3Dh_93NT1avnzpArr4MVq-R2b2joTD8Fepepojv5mH7xcjZ6HN8n44fp2eD5OdEoyllTMCK4oJlpwXgieZ4YKQxVOsaKEMkFExQUzKiu6AqeqLFJGFUGFLnWepmkfnGz3NsF_tSbO5MS3obsySsJyTnCGOe2o0y2lg48xmEo2wU67_yRGcm1Pdvbk2l6HJlt0bmuz-JeT93ejDf8L1xFysA</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Chen, Lin</creator><creator>Borst, René de</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3457-3574</orcidid></search><sort><creationdate>20211215</creationdate><title>Weak imposition of Dirichlet boundary conditions for analyses using Powell–Sabin B‐splines</title><author>Chen, Lin ; Borst, René de</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3275-f5e86a412c866b8697e48e4a131a4245828f685ea7bc3264adb354a20bcdc9333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Benchmarks</topic><topic>Boundary conditions</topic><topic>Crack propagation</topic><topic>Dirichlet boundary conditions</topic><topic>Dirichlet problem</topic><topic>Elasticity</topic><topic>fracture</topic><topic>Fracture mechanics</topic><topic>Interpolation</topic><topic>Lagrange multiplier</topic><topic>Powell–Sabin B‐splines</topic><topic>Propagation</topic><topic>weak imposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Borst, René de</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lin</au><au>Borst, René de</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak imposition of Dirichlet boundary conditions for analyses using Powell–Sabin B‐splines</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2021-12-15</date><risdate>2021</risdate><volume>122</volume><issue>23</issue><spage>6888</spage><epage>6904</epage><pages>6888-6904</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Powell–Sabin B‐splines are enjoying an increased use in the analysis of solids and fluids, including fracture propagation. However, the Powell–Sabin B‐spline interpolation does not hold the Kronecker delta property and, therefore, the imposition of Dirichlet boundary conditions is not as straightforward as for the standard finite elements. Herein, we discuss the applicability of various approaches developed to date for the weak imposition of Dirichlet boundary conditions in analyses which employ Powell–Sabin B‐splines. We take elasticity and fracture propagation using phase‐field modeling as a benchmark problem. We first succinctly recapitulate the phase‐field model for propagation of brittle fracture, which encapsulates linear elasticity, and its discretization using Powell–Sabin B‐splines. As baseline solution we impose Dirichlet boundary conditions in a strong sense, and use this to benchmark the Lagrange multiplier, penalty, and Nitsche's methods, as well as methods based on the Hellinger‐Reissner principle, and the linked Lagrange multiplier method and its modified version.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nme.6815</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3457-3574</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2021-12, Vol.122 (23), p.6888-6904 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2596217164 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Benchmarks Boundary conditions Crack propagation Dirichlet boundary conditions Dirichlet problem Elasticity fracture Fracture mechanics Interpolation Lagrange multiplier Powell–Sabin B‐splines Propagation weak imposition |
title | Weak imposition of Dirichlet boundary conditions for analyses using Powell–Sabin B‐splines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20imposition%20of%20Dirichlet%20boundary%20conditions%20for%20analyses%20using%20Powell%E2%80%93Sabin%20B%E2%80%90splines&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Chen,%20Lin&rft.date=2021-12-15&rft.volume=122&rft.issue=23&rft.spage=6888&rft.epage=6904&rft.pages=6888-6904&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6815&rft_dat=%3Cproquest_cross%3E2596217164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596217164&rft_id=info:pmid/&rfr_iscdi=true |