Weak imposition of Dirichlet boundary conditions for analyses using Powell–Sabin B‐splines

Powell–Sabin B‐splines are enjoying an increased use in the analysis of solids and fluids, including fracture propagation. However, the Powell–Sabin B‐spline interpolation does not hold the Kronecker delta property and, therefore, the imposition of Dirichlet boundary conditions is not as straightfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2021-12, Vol.122 (23), p.6888-6904
Hauptverfasser: Chen, Lin, Borst, René de
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6904
container_issue 23
container_start_page 6888
container_title International journal for numerical methods in engineering
container_volume 122
creator Chen, Lin
Borst, René de
description Powell–Sabin B‐splines are enjoying an increased use in the analysis of solids and fluids, including fracture propagation. However, the Powell–Sabin B‐spline interpolation does not hold the Kronecker delta property and, therefore, the imposition of Dirichlet boundary conditions is not as straightforward as for the standard finite elements. Herein, we discuss the applicability of various approaches developed to date for the weak imposition of Dirichlet boundary conditions in analyses which employ Powell–Sabin B‐splines. We take elasticity and fracture propagation using phase‐field modeling as a benchmark problem. We first succinctly recapitulate the phase‐field model for propagation of brittle fracture, which encapsulates linear elasticity, and its discretization using Powell–Sabin B‐splines. As baseline solution we impose Dirichlet boundary conditions in a strong sense, and use this to benchmark the Lagrange multiplier, penalty, and Nitsche's methods, as well as methods based on the Hellinger‐Reissner principle, and the linked Lagrange multiplier method and its modified version.
doi_str_mv 10.1002/nme.6815
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596217164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596217164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3275-f5e86a412c866b8697e48e4a131a4245828f685ea7bc3264adb354a20bcdc9333</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJsR3bcZZQykMqDwkQOyzHccAltYPdqOqun4DEH_ZLSFu2rGZxzx3NHACOMRpghMiZm5oBF5jtgB5GeZYggrJd0OuiPGG5wPvgIMYJQhgzlPbA26tRn9BOGx_tzHoHfQUvbbD6ozYzWPjWlSosoPau3OQRVj5A5VS9iCbCNlr3Dh_93NT1avnzpArr4MVq-R2b2joTD8Fepepojv5mH7xcjZ6HN8n44fp2eD5OdEoyllTMCK4oJlpwXgieZ4YKQxVOsaKEMkFExQUzKiu6AqeqLFJGFUGFLnWepmkfnGz3NsF_tSbO5MS3obsySsJyTnCGOe2o0y2lg48xmEo2wU67_yRGcm1Pdvbk2l6HJlt0bmuz-JeT93ejDf8L1xFysA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596217164</pqid></control><display><type>article</type><title>Weak imposition of Dirichlet boundary conditions for analyses using Powell–Sabin B‐splines</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Lin ; Borst, René de</creator><creatorcontrib>Chen, Lin ; Borst, René de</creatorcontrib><description>Powell–Sabin B‐splines are enjoying an increased use in the analysis of solids and fluids, including fracture propagation. However, the Powell–Sabin B‐spline interpolation does not hold the Kronecker delta property and, therefore, the imposition of Dirichlet boundary conditions is not as straightforward as for the standard finite elements. Herein, we discuss the applicability of various approaches developed to date for the weak imposition of Dirichlet boundary conditions in analyses which employ Powell–Sabin B‐splines. We take elasticity and fracture propagation using phase‐field modeling as a benchmark problem. We first succinctly recapitulate the phase‐field model for propagation of brittle fracture, which encapsulates linear elasticity, and its discretization using Powell–Sabin B‐splines. As baseline solution we impose Dirichlet boundary conditions in a strong sense, and use this to benchmark the Lagrange multiplier, penalty, and Nitsche's methods, as well as methods based on the Hellinger‐Reissner principle, and the linked Lagrange multiplier method and its modified version.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6815</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Benchmarks ; Boundary conditions ; Crack propagation ; Dirichlet boundary conditions ; Dirichlet problem ; Elasticity ; fracture ; Fracture mechanics ; Interpolation ; Lagrange multiplier ; Powell–Sabin B‐splines ; Propagation ; weak imposition</subject><ispartof>International journal for numerical methods in engineering, 2021-12, Vol.122 (23), p.6888-6904</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3275-f5e86a412c866b8697e48e4a131a4245828f685ea7bc3264adb354a20bcdc9333</citedby><cites>FETCH-LOGICAL-c3275-f5e86a412c866b8697e48e4a131a4245828f685ea7bc3264adb354a20bcdc9333</cites><orcidid>0000-0002-3457-3574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.6815$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.6815$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Borst, René de</creatorcontrib><title>Weak imposition of Dirichlet boundary conditions for analyses using Powell–Sabin B‐splines</title><title>International journal for numerical methods in engineering</title><description>Powell–Sabin B‐splines are enjoying an increased use in the analysis of solids and fluids, including fracture propagation. However, the Powell–Sabin B‐spline interpolation does not hold the Kronecker delta property and, therefore, the imposition of Dirichlet boundary conditions is not as straightforward as for the standard finite elements. Herein, we discuss the applicability of various approaches developed to date for the weak imposition of Dirichlet boundary conditions in analyses which employ Powell–Sabin B‐splines. We take elasticity and fracture propagation using phase‐field modeling as a benchmark problem. We first succinctly recapitulate the phase‐field model for propagation of brittle fracture, which encapsulates linear elasticity, and its discretization using Powell–Sabin B‐splines. As baseline solution we impose Dirichlet boundary conditions in a strong sense, and use this to benchmark the Lagrange multiplier, penalty, and Nitsche's methods, as well as methods based on the Hellinger‐Reissner principle, and the linked Lagrange multiplier method and its modified version.</description><subject>Benchmarks</subject><subject>Boundary conditions</subject><subject>Crack propagation</subject><subject>Dirichlet boundary conditions</subject><subject>Dirichlet problem</subject><subject>Elasticity</subject><subject>fracture</subject><subject>Fracture mechanics</subject><subject>Interpolation</subject><subject>Lagrange multiplier</subject><subject>Powell–Sabin B‐splines</subject><subject>Propagation</subject><subject>weak imposition</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJsR3bcZZQykMqDwkQOyzHccAltYPdqOqun4DEH_ZLSFu2rGZxzx3NHACOMRpghMiZm5oBF5jtgB5GeZYggrJd0OuiPGG5wPvgIMYJQhgzlPbA26tRn9BOGx_tzHoHfQUvbbD6ozYzWPjWlSosoPau3OQRVj5A5VS9iCbCNlr3Dh_93NT1avnzpArr4MVq-R2b2joTD8Fepepojv5mH7xcjZ6HN8n44fp2eD5OdEoyllTMCK4oJlpwXgieZ4YKQxVOsaKEMkFExQUzKiu6AqeqLFJGFUGFLnWepmkfnGz3NsF_tSbO5MS3obsySsJyTnCGOe2o0y2lg48xmEo2wU67_yRGcm1Pdvbk2l6HJlt0bmuz-JeT93ejDf8L1xFysA</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Chen, Lin</creator><creator>Borst, René de</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3457-3574</orcidid></search><sort><creationdate>20211215</creationdate><title>Weak imposition of Dirichlet boundary conditions for analyses using Powell–Sabin B‐splines</title><author>Chen, Lin ; Borst, René de</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3275-f5e86a412c866b8697e48e4a131a4245828f685ea7bc3264adb354a20bcdc9333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Benchmarks</topic><topic>Boundary conditions</topic><topic>Crack propagation</topic><topic>Dirichlet boundary conditions</topic><topic>Dirichlet problem</topic><topic>Elasticity</topic><topic>fracture</topic><topic>Fracture mechanics</topic><topic>Interpolation</topic><topic>Lagrange multiplier</topic><topic>Powell–Sabin B‐splines</topic><topic>Propagation</topic><topic>weak imposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Borst, René de</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lin</au><au>Borst, René de</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak imposition of Dirichlet boundary conditions for analyses using Powell–Sabin B‐splines</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2021-12-15</date><risdate>2021</risdate><volume>122</volume><issue>23</issue><spage>6888</spage><epage>6904</epage><pages>6888-6904</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Powell–Sabin B‐splines are enjoying an increased use in the analysis of solids and fluids, including fracture propagation. However, the Powell–Sabin B‐spline interpolation does not hold the Kronecker delta property and, therefore, the imposition of Dirichlet boundary conditions is not as straightforward as for the standard finite elements. Herein, we discuss the applicability of various approaches developed to date for the weak imposition of Dirichlet boundary conditions in analyses which employ Powell–Sabin B‐splines. We take elasticity and fracture propagation using phase‐field modeling as a benchmark problem. We first succinctly recapitulate the phase‐field model for propagation of brittle fracture, which encapsulates linear elasticity, and its discretization using Powell–Sabin B‐splines. As baseline solution we impose Dirichlet boundary conditions in a strong sense, and use this to benchmark the Lagrange multiplier, penalty, and Nitsche's methods, as well as methods based on the Hellinger‐Reissner principle, and the linked Lagrange multiplier method and its modified version.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.6815</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3457-3574</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2021-12, Vol.122 (23), p.6888-6904
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2596217164
source Wiley Online Library Journals Frontfile Complete
subjects Benchmarks
Boundary conditions
Crack propagation
Dirichlet boundary conditions
Dirichlet problem
Elasticity
fracture
Fracture mechanics
Interpolation
Lagrange multiplier
Powell–Sabin B‐splines
Propagation
weak imposition
title Weak imposition of Dirichlet boundary conditions for analyses using Powell–Sabin B‐splines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20imposition%20of%20Dirichlet%20boundary%20conditions%20for%20analyses%20using%20Powell%E2%80%93Sabin%20B%E2%80%90splines&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Chen,%20Lin&rft.date=2021-12-15&rft.volume=122&rft.issue=23&rft.spage=6888&rft.epage=6904&rft.pages=6888-6904&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6815&rft_dat=%3Cproquest_cross%3E2596217164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596217164&rft_id=info:pmid/&rfr_iscdi=true