Development of the γ′ Stability in Co–Al–W Alloys at 800 °C by Alloying with Carbon

The microstructures and hardnesses of Co–10Al–9W–1C, Co–7Al–5W–1C, and Co–7Al–5W (at. pct) alloys are reported. Homogenization of the Co–10Al–9W–1C alloy was unsuccessful at 1300 °C and both B2–CoAl and η carbide phases remained in the interdendritic regions. However, the lower-solute Co–7Al–5W–1C a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2021-12, Vol.52 (12), p.5314-5328
Hauptverfasser: Kamali, H., Field, R. D., Clarke, A. J., Nedjad, S. Hossein, Kaufman, M. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5328
container_issue 12
container_start_page 5314
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 52
creator Kamali, H.
Field, R. D.
Clarke, A. J.
Nedjad, S. Hossein
Kaufman, M. J.
description The microstructures and hardnesses of Co–10Al–9W–1C, Co–7Al–5W–1C, and Co–7Al–5W (at. pct) alloys are reported. Homogenization of the Co–10Al–9W–1C alloy was unsuccessful at 1300 °C and both B2–CoAl and η carbide phases remained in the interdendritic regions. However, the lower-solute Co–7Al–5W–1C and Co–7Al–5W alloys did homogenize at 1300 °C. Upon aging the Co–10Al–9W–1C alloy at 800 °C, the undissolved η carbide transformed into W-supersaturated D0 19 –Co 3 W phase and subsequently into γ ′-Co 3 (Al,W) phase, indicating the stability of the γ ′ phase in the C-doped alloy in contrast with ternary Co–Al–W alloys where the γ ′ is metastable. Also, high γ ′ volume fractions and low γ ′ coarsening rates were revealed by transmission electron microscopy in the various Co–Al–W–C alloys. These observations are explained by the effects of C on the phase equilibria and the γ / γ ′ composition in the Co–Al–W system. Finally, the microhardness is increased while the density is decreased by alloying with C, which could result in higher specific strengths in the C-doped alloys.
doi_str_mv 10.1007/s11661-021-06470-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596178915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596178915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1858-b2c416ebc6bb8d7aec3fe47a12f712188148d1d0700ea5fcceeab5a265621a8f3</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAVaWWAc8TmI7yyo8pUosALFgYdmp06ZK42KnoOx6By6C4AYcgEP0JBiCxI7FPDT6_xnNh9AhkGMghJ94AMYgIjQESziJxBYaQJrEEWQJ2Q494XGUMhrvoj3v54QQyGI2QA-n5snUdrkwTYttiduZwZ_vm_UbvmmVruqq7XDV4Nxu1i-jOqR7PKpr23msWiwIwR-vOdZdP6yaKX6u2hnOldO22Uc7paq9OfitQ3R3fnabX0bj64urfDSOChCpiDQtEmBGF0xrMeHKFHFpEq6AlhwoCAGJmMCEcEKMSsuiMEbpVFEW3gElyniIjvq9S2cfV8a3cm5XrgknJU0zBlxkkAYV7VWFs947U8qlqxbKdRKI_IYoe4gyQJQ_EKUIprg3-SBupsb9rf7H9QWiHHdt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596178915</pqid></control><display><type>article</type><title>Development of the γ′ Stability in Co–Al–W Alloys at 800 °C by Alloying with Carbon</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kamali, H. ; Field, R. D. ; Clarke, A. J. ; Nedjad, S. Hossein ; Kaufman, M. J.</creator><creatorcontrib>Kamali, H. ; Field, R. D. ; Clarke, A. J. ; Nedjad, S. Hossein ; Kaufman, M. J.</creatorcontrib><description>The microstructures and hardnesses of Co–10Al–9W–1C, Co–7Al–5W–1C, and Co–7Al–5W (at. pct) alloys are reported. Homogenization of the Co–10Al–9W–1C alloy was unsuccessful at 1300 °C and both B2–CoAl and η carbide phases remained in the interdendritic regions. However, the lower-solute Co–7Al–5W–1C and Co–7Al–5W alloys did homogenize at 1300 °C. Upon aging the Co–10Al–9W–1C alloy at 800 °C, the undissolved η carbide transformed into W-supersaturated D0 19 –Co 3 W phase and subsequently into γ ′-Co 3 (Al,W) phase, indicating the stability of the γ ′ phase in the C-doped alloy in contrast with ternary Co–Al–W alloys where the γ ′ is metastable. Also, high γ ′ volume fractions and low γ ′ coarsening rates were revealed by transmission electron microscopy in the various Co–Al–W–C alloys. These observations are explained by the effects of C on the phase equilibria and the γ / γ ′ composition in the Co–Al–W system. Finally, the microhardness is increased while the density is decreased by alloying with C, which could result in higher specific strengths in the C-doped alloys.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-021-06470-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aging (metallurgy) ; Alloying ; Alloys ; Aluminum base alloys ; Carbides ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Materials Science ; Metallic Materials ; Microhardness ; Nanotechnology ; Original Research Article ; Phase equilibria ; Stability ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2021-12, Vol.52 (12), p.5314-5328</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021</rights><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1858-b2c416ebc6bb8d7aec3fe47a12f712188148d1d0700ea5fcceeab5a265621a8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-021-06470-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-021-06470-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kamali, H.</creatorcontrib><creatorcontrib>Field, R. D.</creatorcontrib><creatorcontrib>Clarke, A. J.</creatorcontrib><creatorcontrib>Nedjad, S. Hossein</creatorcontrib><creatorcontrib>Kaufman, M. J.</creatorcontrib><title>Development of the γ′ Stability in Co–Al–W Alloys at 800 °C by Alloying with Carbon</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The microstructures and hardnesses of Co–10Al–9W–1C, Co–7Al–5W–1C, and Co–7Al–5W (at. pct) alloys are reported. Homogenization of the Co–10Al–9W–1C alloy was unsuccessful at 1300 °C and both B2–CoAl and η carbide phases remained in the interdendritic regions. However, the lower-solute Co–7Al–5W–1C and Co–7Al–5W alloys did homogenize at 1300 °C. Upon aging the Co–10Al–9W–1C alloy at 800 °C, the undissolved η carbide transformed into W-supersaturated D0 19 –Co 3 W phase and subsequently into γ ′-Co 3 (Al,W) phase, indicating the stability of the γ ′ phase in the C-doped alloy in contrast with ternary Co–Al–W alloys where the γ ′ is metastable. Also, high γ ′ volume fractions and low γ ′ coarsening rates were revealed by transmission electron microscopy in the various Co–Al–W–C alloys. These observations are explained by the effects of C on the phase equilibria and the γ / γ ′ composition in the Co–Al–W system. Finally, the microhardness is increased while the density is decreased by alloying with C, which could result in higher specific strengths in the C-doped alloys.</description><subject>Aging (metallurgy)</subject><subject>Alloying</subject><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Carbides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microhardness</subject><subject>Nanotechnology</subject><subject>Original Research Article</subject><subject>Phase equilibria</subject><subject>Stability</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtOwzAQhi0EEqVwAVaWWAc8TmI7yyo8pUosALFgYdmp06ZK42KnoOx6By6C4AYcgEP0JBiCxI7FPDT6_xnNh9AhkGMghJ94AMYgIjQESziJxBYaQJrEEWQJ2Q494XGUMhrvoj3v54QQyGI2QA-n5snUdrkwTYttiduZwZ_vm_UbvmmVruqq7XDV4Nxu1i-jOqR7PKpr23msWiwIwR-vOdZdP6yaKX6u2hnOldO22Uc7paq9OfitQ3R3fnabX0bj64urfDSOChCpiDQtEmBGF0xrMeHKFHFpEq6AlhwoCAGJmMCEcEKMSsuiMEbpVFEW3gElyniIjvq9S2cfV8a3cm5XrgknJU0zBlxkkAYV7VWFs947U8qlqxbKdRKI_IYoe4gyQJQ_EKUIprg3-SBupsb9rf7H9QWiHHdt</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Kamali, H.</creator><creator>Field, R. D.</creator><creator>Clarke, A. J.</creator><creator>Nedjad, S. Hossein</creator><creator>Kaufman, M. J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20211201</creationdate><title>Development of the γ′ Stability in Co–Al–W Alloys at 800 °C by Alloying with Carbon</title><author>Kamali, H. ; Field, R. D. ; Clarke, A. J. ; Nedjad, S. Hossein ; Kaufman, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1858-b2c416ebc6bb8d7aec3fe47a12f712188148d1d0700ea5fcceeab5a265621a8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aging (metallurgy)</topic><topic>Alloying</topic><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Carbides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microhardness</topic><topic>Nanotechnology</topic><topic>Original Research Article</topic><topic>Phase equilibria</topic><topic>Stability</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamali, H.</creatorcontrib><creatorcontrib>Field, R. D.</creatorcontrib><creatorcontrib>Clarke, A. J.</creatorcontrib><creatorcontrib>Nedjad, S. Hossein</creatorcontrib><creatorcontrib>Kaufman, M. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamali, H.</au><au>Field, R. D.</au><au>Clarke, A. J.</au><au>Nedjad, S. Hossein</au><au>Kaufman, M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of the γ′ Stability in Co–Al–W Alloys at 800 °C by Alloying with Carbon</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>52</volume><issue>12</issue><spage>5314</spage><epage>5328</epage><pages>5314-5328</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>The microstructures and hardnesses of Co–10Al–9W–1C, Co–7Al–5W–1C, and Co–7Al–5W (at. pct) alloys are reported. Homogenization of the Co–10Al–9W–1C alloy was unsuccessful at 1300 °C and both B2–CoAl and η carbide phases remained in the interdendritic regions. However, the lower-solute Co–7Al–5W–1C and Co–7Al–5W alloys did homogenize at 1300 °C. Upon aging the Co–10Al–9W–1C alloy at 800 °C, the undissolved η carbide transformed into W-supersaturated D0 19 –Co 3 W phase and subsequently into γ ′-Co 3 (Al,W) phase, indicating the stability of the γ ′ phase in the C-doped alloy in contrast with ternary Co–Al–W alloys where the γ ′ is metastable. Also, high γ ′ volume fractions and low γ ′ coarsening rates were revealed by transmission electron microscopy in the various Co–Al–W–C alloys. These observations are explained by the effects of C on the phase equilibria and the γ / γ ′ composition in the Co–Al–W system. Finally, the microhardness is increased while the density is decreased by alloying with C, which could result in higher specific strengths in the C-doped alloys.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-021-06470-8</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2021-12, Vol.52 (12), p.5314-5328
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_2596178915
source SpringerLink Journals - AutoHoldings
subjects Aging (metallurgy)
Alloying
Alloys
Aluminum base alloys
Carbides
Characterization and Evaluation of Materials
Chemistry and Materials Science
Materials Science
Metallic Materials
Microhardness
Nanotechnology
Original Research Article
Phase equilibria
Stability
Structural Materials
Surfaces and Interfaces
Thin Films
title Development of the γ′ Stability in Co–Al–W Alloys at 800 °C by Alloying with Carbon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20the%20%CE%B3%E2%80%B2%20Stability%20in%20Co%E2%80%93Al%E2%80%93W%20Alloys%20at%20800%20%C2%B0C%20by%20Alloying%20with%20Carbon&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Kamali,%20H.&rft.date=2021-12-01&rft.volume=52&rft.issue=12&rft.spage=5314&rft.epage=5328&rft.pages=5314-5328&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-021-06470-8&rft_dat=%3Cproquest_cross%3E2596178915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596178915&rft_id=info:pmid/&rfr_iscdi=true