Hydrodynamic theory of the Dyakonov-Shur instability in graphene transistors
We present a comprehensive theory of the Dyakonov-Shur (DS) plasma instability in current-biased graphene transistors. Using the hydrodynamic approach, we derive equations describing the DS instability in the two-dimensional electron fluid in graphene at arbitrary values of electron drift velocity....
Gespeichert in:
Veröffentlicht in: | Physical review. B 2021-10, Vol.104 (15), Article 155440 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Physical review. B |
container_volume | 104 |
creator | Crabb, Justin Cantos-Roman, Xavier Jornet, Josep M. Aizin, Gregory R. |
description | We present a comprehensive theory of the Dyakonov-Shur (DS) plasma instability in current-biased graphene transistors. Using the hydrodynamic approach, we derive equations describing the DS instability in the two-dimensional electron fluid in graphene at arbitrary values of electron drift velocity. These nonlinear equations together with Maxwell's equations are used for numerical analysis of the spatial and temporal evolution of the graphene electron system after the DS instability is triggered by random current fluctuations. We analyze conditions necessary for the onset of the DS instability and the properties of the final stationary state of the graphene electron system. We demonstrate that the instability results in the coherent anharmonic oscillatory state of the electron fluid and calculate both the spatial distribution and the power of the electromagnetic radiation generated by the graphene transistor in the DS instability regime. |
doi_str_mv | 10.1103/PhysRevB.104.155440 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596072046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596072046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-906e0b6162d2543e71c599bc6552eb0bf3b1406783aa50c94d93fdcdcb7319d13</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWGp_gZsB11NvJo8xS63aCgXFxzrkNc7UdlKTtJB_75Sqq_txOZwDH0KXGKYYA7l-aXN8dfu7KQY6xYxRCidoVFEuSiG4OP1nBudoEuMKADAHUYMYoeUi2-Bt7tWmM0VqnQ-58M2Bivusvnzv9-VbuwtF18ekdLfuUh64-Axq27reFSmoPnYx-RAv0Fmj1tFNfu8YfTw-vM8W5fJ5_jS7XZaGUJJKAdyB5phXtmKUuBobJoQ2nLHKadAN0ZgCr2-IUgyMoFaQxhprdE2wsJiM0dWxdxv8987FJFd-F_phUlZMcKgroHxIkWPKBB9jcI3chm6jQpYY5MGc_DM3PKg8miM_yS1jhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596072046</pqid></control><display><type>article</type><title>Hydrodynamic theory of the Dyakonov-Shur instability in graphene transistors</title><source>American Physical Society Journals</source><creator>Crabb, Justin ; Cantos-Roman, Xavier ; Jornet, Josep M. ; Aizin, Gregory R.</creator><creatorcontrib>Crabb, Justin ; Cantos-Roman, Xavier ; Jornet, Josep M. ; Aizin, Gregory R.</creatorcontrib><description>We present a comprehensive theory of the Dyakonov-Shur (DS) plasma instability in current-biased graphene transistors. Using the hydrodynamic approach, we derive equations describing the DS instability in the two-dimensional electron fluid in graphene at arbitrary values of electron drift velocity. These nonlinear equations together with Maxwell's equations are used for numerical analysis of the spatial and temporal evolution of the graphene electron system after the DS instability is triggered by random current fluctuations. We analyze conditions necessary for the onset of the DS instability and the properties of the final stationary state of the graphene electron system. We demonstrate that the instability results in the coherent anharmonic oscillatory state of the electron fluid and calculate both the spatial distribution and the power of the electromagnetic radiation generated by the graphene transistor in the DS instability regime.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.104.155440</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anharmonicity ; Electric power distribution ; Electromagnetic radiation ; Electron drift velocity ; Electrons ; Graphene ; Magnetohydrodynamic stability ; Mathematical analysis ; Maxwell's equations ; Nonlinear equations ; Numerical analysis ; Semiconductor devices ; Spatial distribution ; Stability ; Stability analysis ; Transistors</subject><ispartof>Physical review. B, 2021-10, Vol.104 (15), Article 155440</ispartof><rights>Copyright American Physical Society Oct 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-906e0b6162d2543e71c599bc6552eb0bf3b1406783aa50c94d93fdcdcb7319d13</citedby><cites>FETCH-LOGICAL-c343t-906e0b6162d2543e71c599bc6552eb0bf3b1406783aa50c94d93fdcdcb7319d13</cites><orcidid>0000-0003-1016-3607 ; 0000-0001-8255-7707 ; 0000-0001-6351-1754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Crabb, Justin</creatorcontrib><creatorcontrib>Cantos-Roman, Xavier</creatorcontrib><creatorcontrib>Jornet, Josep M.</creatorcontrib><creatorcontrib>Aizin, Gregory R.</creatorcontrib><title>Hydrodynamic theory of the Dyakonov-Shur instability in graphene transistors</title><title>Physical review. B</title><description>We present a comprehensive theory of the Dyakonov-Shur (DS) plasma instability in current-biased graphene transistors. Using the hydrodynamic approach, we derive equations describing the DS instability in the two-dimensional electron fluid in graphene at arbitrary values of electron drift velocity. These nonlinear equations together with Maxwell's equations are used for numerical analysis of the spatial and temporal evolution of the graphene electron system after the DS instability is triggered by random current fluctuations. We analyze conditions necessary for the onset of the DS instability and the properties of the final stationary state of the graphene electron system. We demonstrate that the instability results in the coherent anharmonic oscillatory state of the electron fluid and calculate both the spatial distribution and the power of the electromagnetic radiation generated by the graphene transistor in the DS instability regime.</description><subject>Anharmonicity</subject><subject>Electric power distribution</subject><subject>Electromagnetic radiation</subject><subject>Electron drift velocity</subject><subject>Electrons</subject><subject>Graphene</subject><subject>Magnetohydrodynamic stability</subject><subject>Mathematical analysis</subject><subject>Maxwell's equations</subject><subject>Nonlinear equations</subject><subject>Numerical analysis</subject><subject>Semiconductor devices</subject><subject>Spatial distribution</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Transistors</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWGp_gZsB11NvJo8xS63aCgXFxzrkNc7UdlKTtJB_75Sqq_txOZwDH0KXGKYYA7l-aXN8dfu7KQY6xYxRCidoVFEuSiG4OP1nBudoEuMKADAHUYMYoeUi2-Bt7tWmM0VqnQ-58M2Bivusvnzv9-VbuwtF18ekdLfuUh64-Axq27reFSmoPnYx-RAv0Fmj1tFNfu8YfTw-vM8W5fJ5_jS7XZaGUJJKAdyB5phXtmKUuBobJoQ2nLHKadAN0ZgCr2-IUgyMoFaQxhprdE2wsJiM0dWxdxv8987FJFd-F_phUlZMcKgroHxIkWPKBB9jcI3chm6jQpYY5MGc_DM3PKg8miM_yS1jhg</recordid><startdate>20211029</startdate><enddate>20211029</enddate><creator>Crabb, Justin</creator><creator>Cantos-Roman, Xavier</creator><creator>Jornet, Josep M.</creator><creator>Aizin, Gregory R.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1016-3607</orcidid><orcidid>https://orcid.org/0000-0001-8255-7707</orcidid><orcidid>https://orcid.org/0000-0001-6351-1754</orcidid></search><sort><creationdate>20211029</creationdate><title>Hydrodynamic theory of the Dyakonov-Shur instability in graphene transistors</title><author>Crabb, Justin ; Cantos-Roman, Xavier ; Jornet, Josep M. ; Aizin, Gregory R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-906e0b6162d2543e71c599bc6552eb0bf3b1406783aa50c94d93fdcdcb7319d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anharmonicity</topic><topic>Electric power distribution</topic><topic>Electromagnetic radiation</topic><topic>Electron drift velocity</topic><topic>Electrons</topic><topic>Graphene</topic><topic>Magnetohydrodynamic stability</topic><topic>Mathematical analysis</topic><topic>Maxwell's equations</topic><topic>Nonlinear equations</topic><topic>Numerical analysis</topic><topic>Semiconductor devices</topic><topic>Spatial distribution</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crabb, Justin</creatorcontrib><creatorcontrib>Cantos-Roman, Xavier</creatorcontrib><creatorcontrib>Jornet, Josep M.</creatorcontrib><creatorcontrib>Aizin, Gregory R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crabb, Justin</au><au>Cantos-Roman, Xavier</au><au>Jornet, Josep M.</au><au>Aizin, Gregory R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic theory of the Dyakonov-Shur instability in graphene transistors</atitle><jtitle>Physical review. B</jtitle><date>2021-10-29</date><risdate>2021</risdate><volume>104</volume><issue>15</issue><artnum>155440</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We present a comprehensive theory of the Dyakonov-Shur (DS) plasma instability in current-biased graphene transistors. Using the hydrodynamic approach, we derive equations describing the DS instability in the two-dimensional electron fluid in graphene at arbitrary values of electron drift velocity. These nonlinear equations together with Maxwell's equations are used for numerical analysis of the spatial and temporal evolution of the graphene electron system after the DS instability is triggered by random current fluctuations. We analyze conditions necessary for the onset of the DS instability and the properties of the final stationary state of the graphene electron system. We demonstrate that the instability results in the coherent anharmonic oscillatory state of the electron fluid and calculate both the spatial distribution and the power of the electromagnetic radiation generated by the graphene transistor in the DS instability regime.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.104.155440</doi><orcidid>https://orcid.org/0000-0003-1016-3607</orcidid><orcidid>https://orcid.org/0000-0001-8255-7707</orcidid><orcidid>https://orcid.org/0000-0001-6351-1754</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2021-10, Vol.104 (15), Article 155440 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2596072046 |
source | American Physical Society Journals |
subjects | Anharmonicity Electric power distribution Electromagnetic radiation Electron drift velocity Electrons Graphene Magnetohydrodynamic stability Mathematical analysis Maxwell's equations Nonlinear equations Numerical analysis Semiconductor devices Spatial distribution Stability Stability analysis Transistors |
title | Hydrodynamic theory of the Dyakonov-Shur instability in graphene transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T04%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20theory%20of%20the%20Dyakonov-Shur%20instability%20in%20graphene%20transistors&rft.jtitle=Physical%20review.%20B&rft.au=Crabb,%20Justin&rft.date=2021-10-29&rft.volume=104&rft.issue=15&rft.artnum=155440&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.104.155440&rft_dat=%3Cproquest_cross%3E2596072046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596072046&rft_id=info:pmid/&rfr_iscdi=true |