Hydrodynamic theory of the Dyakonov-Shur instability in graphene transistors

We present a comprehensive theory of the Dyakonov-Shur (DS) plasma instability in current-biased graphene transistors. Using the hydrodynamic approach, we derive equations describing the DS instability in the two-dimensional electron fluid in graphene at arbitrary values of electron drift velocity....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2021-10, Vol.104 (15), Article 155440
Hauptverfasser: Crabb, Justin, Cantos-Roman, Xavier, Jornet, Josep M., Aizin, Gregory R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title Physical review. B
container_volume 104
creator Crabb, Justin
Cantos-Roman, Xavier
Jornet, Josep M.
Aizin, Gregory R.
description We present a comprehensive theory of the Dyakonov-Shur (DS) plasma instability in current-biased graphene transistors. Using the hydrodynamic approach, we derive equations describing the DS instability in the two-dimensional electron fluid in graphene at arbitrary values of electron drift velocity. These nonlinear equations together with Maxwell's equations are used for numerical analysis of the spatial and temporal evolution of the graphene electron system after the DS instability is triggered by random current fluctuations. We analyze conditions necessary for the onset of the DS instability and the properties of the final stationary state of the graphene electron system. We demonstrate that the instability results in the coherent anharmonic oscillatory state of the electron fluid and calculate both the spatial distribution and the power of the electromagnetic radiation generated by the graphene transistor in the DS instability regime.
doi_str_mv 10.1103/PhysRevB.104.155440
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596072046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596072046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-906e0b6162d2543e71c599bc6552eb0bf3b1406783aa50c94d93fdcdcb7319d13</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWGp_gZsB11NvJo8xS63aCgXFxzrkNc7UdlKTtJB_75Sqq_txOZwDH0KXGKYYA7l-aXN8dfu7KQY6xYxRCidoVFEuSiG4OP1nBudoEuMKADAHUYMYoeUi2-Bt7tWmM0VqnQ-58M2Bivusvnzv9-VbuwtF18ekdLfuUh64-Axq27reFSmoPnYx-RAv0Fmj1tFNfu8YfTw-vM8W5fJ5_jS7XZaGUJJKAdyB5phXtmKUuBobJoQ2nLHKadAN0ZgCr2-IUgyMoFaQxhprdE2wsJiM0dWxdxv8987FJFd-F_phUlZMcKgroHxIkWPKBB9jcI3chm6jQpYY5MGc_DM3PKg8miM_yS1jhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596072046</pqid></control><display><type>article</type><title>Hydrodynamic theory of the Dyakonov-Shur instability in graphene transistors</title><source>American Physical Society Journals</source><creator>Crabb, Justin ; Cantos-Roman, Xavier ; Jornet, Josep M. ; Aizin, Gregory R.</creator><creatorcontrib>Crabb, Justin ; Cantos-Roman, Xavier ; Jornet, Josep M. ; Aizin, Gregory R.</creatorcontrib><description>We present a comprehensive theory of the Dyakonov-Shur (DS) plasma instability in current-biased graphene transistors. Using the hydrodynamic approach, we derive equations describing the DS instability in the two-dimensional electron fluid in graphene at arbitrary values of electron drift velocity. These nonlinear equations together with Maxwell's equations are used for numerical analysis of the spatial and temporal evolution of the graphene electron system after the DS instability is triggered by random current fluctuations. We analyze conditions necessary for the onset of the DS instability and the properties of the final stationary state of the graphene electron system. We demonstrate that the instability results in the coherent anharmonic oscillatory state of the electron fluid and calculate both the spatial distribution and the power of the electromagnetic radiation generated by the graphene transistor in the DS instability regime.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.104.155440</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anharmonicity ; Electric power distribution ; Electromagnetic radiation ; Electron drift velocity ; Electrons ; Graphene ; Magnetohydrodynamic stability ; Mathematical analysis ; Maxwell's equations ; Nonlinear equations ; Numerical analysis ; Semiconductor devices ; Spatial distribution ; Stability ; Stability analysis ; Transistors</subject><ispartof>Physical review. B, 2021-10, Vol.104 (15), Article 155440</ispartof><rights>Copyright American Physical Society Oct 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-906e0b6162d2543e71c599bc6552eb0bf3b1406783aa50c94d93fdcdcb7319d13</citedby><cites>FETCH-LOGICAL-c343t-906e0b6162d2543e71c599bc6552eb0bf3b1406783aa50c94d93fdcdcb7319d13</cites><orcidid>0000-0003-1016-3607 ; 0000-0001-8255-7707 ; 0000-0001-6351-1754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Crabb, Justin</creatorcontrib><creatorcontrib>Cantos-Roman, Xavier</creatorcontrib><creatorcontrib>Jornet, Josep M.</creatorcontrib><creatorcontrib>Aizin, Gregory R.</creatorcontrib><title>Hydrodynamic theory of the Dyakonov-Shur instability in graphene transistors</title><title>Physical review. B</title><description>We present a comprehensive theory of the Dyakonov-Shur (DS) plasma instability in current-biased graphene transistors. Using the hydrodynamic approach, we derive equations describing the DS instability in the two-dimensional electron fluid in graphene at arbitrary values of electron drift velocity. These nonlinear equations together with Maxwell's equations are used for numerical analysis of the spatial and temporal evolution of the graphene electron system after the DS instability is triggered by random current fluctuations. We analyze conditions necessary for the onset of the DS instability and the properties of the final stationary state of the graphene electron system. We demonstrate that the instability results in the coherent anharmonic oscillatory state of the electron fluid and calculate both the spatial distribution and the power of the electromagnetic radiation generated by the graphene transistor in the DS instability regime.</description><subject>Anharmonicity</subject><subject>Electric power distribution</subject><subject>Electromagnetic radiation</subject><subject>Electron drift velocity</subject><subject>Electrons</subject><subject>Graphene</subject><subject>Magnetohydrodynamic stability</subject><subject>Mathematical analysis</subject><subject>Maxwell's equations</subject><subject>Nonlinear equations</subject><subject>Numerical analysis</subject><subject>Semiconductor devices</subject><subject>Spatial distribution</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Transistors</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWGp_gZsB11NvJo8xS63aCgXFxzrkNc7UdlKTtJB_75Sqq_txOZwDH0KXGKYYA7l-aXN8dfu7KQY6xYxRCidoVFEuSiG4OP1nBudoEuMKADAHUYMYoeUi2-Bt7tWmM0VqnQ-58M2Bivusvnzv9-VbuwtF18ekdLfuUh64-Axq27reFSmoPnYx-RAv0Fmj1tFNfu8YfTw-vM8W5fJ5_jS7XZaGUJJKAdyB5phXtmKUuBobJoQ2nLHKadAN0ZgCr2-IUgyMoFaQxhprdE2wsJiM0dWxdxv8987FJFd-F_phUlZMcKgroHxIkWPKBB9jcI3chm6jQpYY5MGc_DM3PKg8miM_yS1jhg</recordid><startdate>20211029</startdate><enddate>20211029</enddate><creator>Crabb, Justin</creator><creator>Cantos-Roman, Xavier</creator><creator>Jornet, Josep M.</creator><creator>Aizin, Gregory R.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1016-3607</orcidid><orcidid>https://orcid.org/0000-0001-8255-7707</orcidid><orcidid>https://orcid.org/0000-0001-6351-1754</orcidid></search><sort><creationdate>20211029</creationdate><title>Hydrodynamic theory of the Dyakonov-Shur instability in graphene transistors</title><author>Crabb, Justin ; Cantos-Roman, Xavier ; Jornet, Josep M. ; Aizin, Gregory R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-906e0b6162d2543e71c599bc6552eb0bf3b1406783aa50c94d93fdcdcb7319d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anharmonicity</topic><topic>Electric power distribution</topic><topic>Electromagnetic radiation</topic><topic>Electron drift velocity</topic><topic>Electrons</topic><topic>Graphene</topic><topic>Magnetohydrodynamic stability</topic><topic>Mathematical analysis</topic><topic>Maxwell's equations</topic><topic>Nonlinear equations</topic><topic>Numerical analysis</topic><topic>Semiconductor devices</topic><topic>Spatial distribution</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crabb, Justin</creatorcontrib><creatorcontrib>Cantos-Roman, Xavier</creatorcontrib><creatorcontrib>Jornet, Josep M.</creatorcontrib><creatorcontrib>Aizin, Gregory R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crabb, Justin</au><au>Cantos-Roman, Xavier</au><au>Jornet, Josep M.</au><au>Aizin, Gregory R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic theory of the Dyakonov-Shur instability in graphene transistors</atitle><jtitle>Physical review. B</jtitle><date>2021-10-29</date><risdate>2021</risdate><volume>104</volume><issue>15</issue><artnum>155440</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We present a comprehensive theory of the Dyakonov-Shur (DS) plasma instability in current-biased graphene transistors. Using the hydrodynamic approach, we derive equations describing the DS instability in the two-dimensional electron fluid in graphene at arbitrary values of electron drift velocity. These nonlinear equations together with Maxwell's equations are used for numerical analysis of the spatial and temporal evolution of the graphene electron system after the DS instability is triggered by random current fluctuations. We analyze conditions necessary for the onset of the DS instability and the properties of the final stationary state of the graphene electron system. We demonstrate that the instability results in the coherent anharmonic oscillatory state of the electron fluid and calculate both the spatial distribution and the power of the electromagnetic radiation generated by the graphene transistor in the DS instability regime.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.104.155440</doi><orcidid>https://orcid.org/0000-0003-1016-3607</orcidid><orcidid>https://orcid.org/0000-0001-8255-7707</orcidid><orcidid>https://orcid.org/0000-0001-6351-1754</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2021-10, Vol.104 (15), Article 155440
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2596072046
source American Physical Society Journals
subjects Anharmonicity
Electric power distribution
Electromagnetic radiation
Electron drift velocity
Electrons
Graphene
Magnetohydrodynamic stability
Mathematical analysis
Maxwell's equations
Nonlinear equations
Numerical analysis
Semiconductor devices
Spatial distribution
Stability
Stability analysis
Transistors
title Hydrodynamic theory of the Dyakonov-Shur instability in graphene transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T04%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20theory%20of%20the%20Dyakonov-Shur%20instability%20in%20graphene%20transistors&rft.jtitle=Physical%20review.%20B&rft.au=Crabb,%20Justin&rft.date=2021-10-29&rft.volume=104&rft.issue=15&rft.artnum=155440&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.104.155440&rft_dat=%3Cproquest_cross%3E2596072046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596072046&rft_id=info:pmid/&rfr_iscdi=true