Policies for Rapid Mitigation of the Crisis’ Effects on Agricultural Supply Chains: A Multi-Criteria Decision Support System with Monte Carlo Simulation
This paper proposes an integrated approach towards rapid decision-making in the agricultural sector aimed at improvement of its resilience. Methodologically, we seek to devise a framework that is able to take the uncertainty regarding policy preferences into account. Empirically, we focus on the eff...
Gespeichert in:
Veröffentlicht in: | Sustainability 2021-11, Vol.13 (21), p.11899 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | 11899 |
container_title | Sustainability |
container_volume | 13 |
creator | Baležentis, Tomas Morkūnas, Mangirdas Žičkienė, Agnė Volkov, Artiom Ribašauskienė, Erika Štreimikienė, Dalia |
description | This paper proposes an integrated approach towards rapid decision-making in the agricultural sector aimed at improvement of its resilience. Methodologically, we seek to devise a framework that is able to take the uncertainty regarding policy preferences into account. Empirically, we focus on the effects of COVID-19 on agriculture. First, we propose a multi-criteria decision-making framework following the Pugh matrix approach for group decision-making. The Monte Carlo simulation is used to check the effects of the perturbations in the criteria weights. Then, we identify the factors behind agricultural resilience and organize them into the three groups (food security, agricultural viability, decent jobs). The expert survey is carried out to elicit the ratings in regard to the expected effects of the policy measures with respect to dimensions of agricultural resilience. The case of Lithuania is considered in the empirical analysis. The existing and newly proposed agricultural policy measures are taken into account. The measures related to alleviation of the financial burden (e.g., credit payment deferral) appear to be the most effective in accordance with the expert ratings. |
doi_str_mv | 10.3390/su132111899 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2596068192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815702874</galeid><sourcerecordid>A815702874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-9dbbe5e89232a57472c0c9fcfd4311bb6f208c3f8f177720194fb56e5c805cb93</originalsourceid><addsrcrecordid>eNptkttqGzEQhpeQQkOaq77AQK5C2VQH70G5M86hgZiGuL0WWlmyJ-yutpKWxHd5jfbx-iSVmxBiiOZCYub7_x_EZNlnSk45F-RrGClnlNJaiL3sgJGK5pQUZP_N-2N2FMI9SYdzKmh5kP25dS1qNAGs83CnBlzCHCOuVETXg7MQ1wZmHgOGv0-_4cJao2OANJuuPOqxjaNXLSzGYWg3MFsr7MMZTGGeJpgnYTQeFZwbnSySags6H2GxCdF08IBxDXPXxxSifOtggd3Y_g__lH2wqg3m6OU-zH5eXvyYfctvvl9dz6Y3ueZCxFwsm8YUphaMM1VUk4ppooXVdjnhlDZNaRmpNbe1pVVVMULFxDZFaQpdk0I3gh9mx8--g3e_RhOivHej71OkZIUoSVnT5P1KrVRrJPbWRa90h0HLaU2LirC6miTq9B0q1dJ0qF1vLKb-juBkR6C3X_EYV2oMQV4v7nbZL8-s9i4Eb6wcPHbKbyQlcrsC8s0K8H-GlaOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596068192</pqid></control><display><type>article</type><title>Policies for Rapid Mitigation of the Crisis’ Effects on Agricultural Supply Chains: A Multi-Criteria Decision Support System with Monte Carlo Simulation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Baležentis, Tomas ; Morkūnas, Mangirdas ; Žičkienė, Agnė ; Volkov, Artiom ; Ribašauskienė, Erika ; Štreimikienė, Dalia</creator><creatorcontrib>Baležentis, Tomas ; Morkūnas, Mangirdas ; Žičkienė, Agnė ; Volkov, Artiom ; Ribašauskienė, Erika ; Štreimikienė, Dalia</creatorcontrib><description>This paper proposes an integrated approach towards rapid decision-making in the agricultural sector aimed at improvement of its resilience. Methodologically, we seek to devise a framework that is able to take the uncertainty regarding policy preferences into account. Empirically, we focus on the effects of COVID-19 on agriculture. First, we propose a multi-criteria decision-making framework following the Pugh matrix approach for group decision-making. The Monte Carlo simulation is used to check the effects of the perturbations in the criteria weights. Then, we identify the factors behind agricultural resilience and organize them into the three groups (food security, agricultural viability, decent jobs). The expert survey is carried out to elicit the ratings in regard to the expected effects of the policy measures with respect to dimensions of agricultural resilience. The case of Lithuania is considered in the empirical analysis. The existing and newly proposed agricultural policy measures are taken into account. The measures related to alleviation of the financial burden (e.g., credit payment deferral) appear to be the most effective in accordance with the expert ratings.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su132111899</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural education ; Agricultural equipment and supplies industry ; Agricultural policy ; Agricultural research ; Cooperation ; Coronaviruses ; COVID-19 ; Crude oil prices ; Decision making ; Farm supplies ; Food security ; Food supply ; Labor force ; Laws, regulations and rules ; Management ; Medical research ; Methods ; Mitigation ; Monte Carlo method ; Monte Carlo simulation ; Multiple criterion ; Pandemics ; Resilience ; Services ; Supply chains ; Sustainability ; Wage & price controls</subject><ispartof>Sustainability, 2021-11, Vol.13 (21), p.11899</ispartof><rights>COPYRIGHT 2021 MDPI AG</rights><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-9dbbe5e89232a57472c0c9fcfd4311bb6f208c3f8f177720194fb56e5c805cb93</citedby><cites>FETCH-LOGICAL-c399t-9dbbe5e89232a57472c0c9fcfd4311bb6f208c3f8f177720194fb56e5c805cb93</cites><orcidid>0000-0002-3247-9912 ; 0000-0002-3906-1711 ; 0000-0003-1394-3852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Baležentis, Tomas</creatorcontrib><creatorcontrib>Morkūnas, Mangirdas</creatorcontrib><creatorcontrib>Žičkienė, Agnė</creatorcontrib><creatorcontrib>Volkov, Artiom</creatorcontrib><creatorcontrib>Ribašauskienė, Erika</creatorcontrib><creatorcontrib>Štreimikienė, Dalia</creatorcontrib><title>Policies for Rapid Mitigation of the Crisis’ Effects on Agricultural Supply Chains: A Multi-Criteria Decision Support System with Monte Carlo Simulation</title><title>Sustainability</title><description>This paper proposes an integrated approach towards rapid decision-making in the agricultural sector aimed at improvement of its resilience. Methodologically, we seek to devise a framework that is able to take the uncertainty regarding policy preferences into account. Empirically, we focus on the effects of COVID-19 on agriculture. First, we propose a multi-criteria decision-making framework following the Pugh matrix approach for group decision-making. The Monte Carlo simulation is used to check the effects of the perturbations in the criteria weights. Then, we identify the factors behind agricultural resilience and organize them into the three groups (food security, agricultural viability, decent jobs). The expert survey is carried out to elicit the ratings in regard to the expected effects of the policy measures with respect to dimensions of agricultural resilience. The case of Lithuania is considered in the empirical analysis. The existing and newly proposed agricultural policy measures are taken into account. The measures related to alleviation of the financial burden (e.g., credit payment deferral) appear to be the most effective in accordance with the expert ratings.</description><subject>Agricultural education</subject><subject>Agricultural equipment and supplies industry</subject><subject>Agricultural policy</subject><subject>Agricultural research</subject><subject>Cooperation</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Crude oil prices</subject><subject>Decision making</subject><subject>Farm supplies</subject><subject>Food security</subject><subject>Food supply</subject><subject>Labor force</subject><subject>Laws, regulations and rules</subject><subject>Management</subject><subject>Medical research</subject><subject>Methods</subject><subject>Mitigation</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Multiple criterion</subject><subject>Pandemics</subject><subject>Resilience</subject><subject>Services</subject><subject>Supply chains</subject><subject>Sustainability</subject><subject>Wage & price controls</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkttqGzEQhpeQQkOaq77AQK5C2VQH70G5M86hgZiGuL0WWlmyJ-yutpKWxHd5jfbx-iSVmxBiiOZCYub7_x_EZNlnSk45F-RrGClnlNJaiL3sgJGK5pQUZP_N-2N2FMI9SYdzKmh5kP25dS1qNAGs83CnBlzCHCOuVETXg7MQ1wZmHgOGv0-_4cJao2OANJuuPOqxjaNXLSzGYWg3MFsr7MMZTGGeJpgnYTQeFZwbnSySags6H2GxCdF08IBxDXPXxxSifOtggd3Y_g__lH2wqg3m6OU-zH5eXvyYfctvvl9dz6Y3ueZCxFwsm8YUphaMM1VUk4ppooXVdjnhlDZNaRmpNbe1pVVVMULFxDZFaQpdk0I3gh9mx8--g3e_RhOivHej71OkZIUoSVnT5P1KrVRrJPbWRa90h0HLaU2LirC6miTq9B0q1dJ0qF1vLKb-juBkR6C3X_EYV2oMQV4v7nbZL8-s9i4Eb6wcPHbKbyQlcrsC8s0K8H-GlaOU</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Baležentis, Tomas</creator><creator>Morkūnas, Mangirdas</creator><creator>Žičkienė, Agnė</creator><creator>Volkov, Artiom</creator><creator>Ribašauskienė, Erika</creator><creator>Štreimikienė, Dalia</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3247-9912</orcidid><orcidid>https://orcid.org/0000-0002-3906-1711</orcidid><orcidid>https://orcid.org/0000-0003-1394-3852</orcidid></search><sort><creationdate>20211101</creationdate><title>Policies for Rapid Mitigation of the Crisis’ Effects on Agricultural Supply Chains: A Multi-Criteria Decision Support System with Monte Carlo Simulation</title><author>Baležentis, Tomas ; Morkūnas, Mangirdas ; Žičkienė, Agnė ; Volkov, Artiom ; Ribašauskienė, Erika ; Štreimikienė, Dalia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-9dbbe5e89232a57472c0c9fcfd4311bb6f208c3f8f177720194fb56e5c805cb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural education</topic><topic>Agricultural equipment and supplies industry</topic><topic>Agricultural policy</topic><topic>Agricultural research</topic><topic>Cooperation</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Crude oil prices</topic><topic>Decision making</topic><topic>Farm supplies</topic><topic>Food security</topic><topic>Food supply</topic><topic>Labor force</topic><topic>Laws, regulations and rules</topic><topic>Management</topic><topic>Medical research</topic><topic>Methods</topic><topic>Mitigation</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Multiple criterion</topic><topic>Pandemics</topic><topic>Resilience</topic><topic>Services</topic><topic>Supply chains</topic><topic>Sustainability</topic><topic>Wage & price controls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baležentis, Tomas</creatorcontrib><creatorcontrib>Morkūnas, Mangirdas</creatorcontrib><creatorcontrib>Žičkienė, Agnė</creatorcontrib><creatorcontrib>Volkov, Artiom</creatorcontrib><creatorcontrib>Ribašauskienė, Erika</creatorcontrib><creatorcontrib>Štreimikienė, Dalia</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baležentis, Tomas</au><au>Morkūnas, Mangirdas</au><au>Žičkienė, Agnė</au><au>Volkov, Artiom</au><au>Ribašauskienė, Erika</au><au>Štreimikienė, Dalia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Policies for Rapid Mitigation of the Crisis’ Effects on Agricultural Supply Chains: A Multi-Criteria Decision Support System with Monte Carlo Simulation</atitle><jtitle>Sustainability</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>13</volume><issue>21</issue><spage>11899</spage><pages>11899-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>This paper proposes an integrated approach towards rapid decision-making in the agricultural sector aimed at improvement of its resilience. Methodologically, we seek to devise a framework that is able to take the uncertainty regarding policy preferences into account. Empirically, we focus on the effects of COVID-19 on agriculture. First, we propose a multi-criteria decision-making framework following the Pugh matrix approach for group decision-making. The Monte Carlo simulation is used to check the effects of the perturbations in the criteria weights. Then, we identify the factors behind agricultural resilience and organize them into the three groups (food security, agricultural viability, decent jobs). The expert survey is carried out to elicit the ratings in regard to the expected effects of the policy measures with respect to dimensions of agricultural resilience. The case of Lithuania is considered in the empirical analysis. The existing and newly proposed agricultural policy measures are taken into account. The measures related to alleviation of the financial burden (e.g., credit payment deferral) appear to be the most effective in accordance with the expert ratings.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su132111899</doi><orcidid>https://orcid.org/0000-0002-3247-9912</orcidid><orcidid>https://orcid.org/0000-0002-3906-1711</orcidid><orcidid>https://orcid.org/0000-0003-1394-3852</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2021-11, Vol.13 (21), p.11899 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2596068192 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Agricultural education Agricultural equipment and supplies industry Agricultural policy Agricultural research Cooperation Coronaviruses COVID-19 Crude oil prices Decision making Farm supplies Food security Food supply Labor force Laws, regulations and rules Management Medical research Methods Mitigation Monte Carlo method Monte Carlo simulation Multiple criterion Pandemics Resilience Services Supply chains Sustainability Wage & price controls |
title | Policies for Rapid Mitigation of the Crisis’ Effects on Agricultural Supply Chains: A Multi-Criteria Decision Support System with Monte Carlo Simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Policies%20for%20Rapid%20Mitigation%20of%20the%20Crisis%E2%80%99%20Effects%20on%20Agricultural%20Supply%20Chains:%20A%20Multi-Criteria%20Decision%20Support%20System%20with%20Monte%20Carlo%20Simulation&rft.jtitle=Sustainability&rft.au=Bale%C5%BEentis,%20Tomas&rft.date=2021-11-01&rft.volume=13&rft.issue=21&rft.spage=11899&rft.pages=11899-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su132111899&rft_dat=%3Cgale_proqu%3EA815702874%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596068192&rft_id=info:pmid/&rft_galeid=A815702874&rfr_iscdi=true |