Policies for Rapid Mitigation of the Crisis’ Effects on Agricultural Supply Chains: A Multi-Criteria Decision Support System with Monte Carlo Simulation

This paper proposes an integrated approach towards rapid decision-making in the agricultural sector aimed at improvement of its resilience. Methodologically, we seek to devise a framework that is able to take the uncertainty regarding policy preferences into account. Empirically, we focus on the eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2021-11, Vol.13 (21), p.11899
Hauptverfasser: Baležentis, Tomas, Morkūnas, Mangirdas, Žičkienė, Agnė, Volkov, Artiom, Ribašauskienė, Erika, Štreimikienė, Dalia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 11899
container_title Sustainability
container_volume 13
creator Baležentis, Tomas
Morkūnas, Mangirdas
Žičkienė, Agnė
Volkov, Artiom
Ribašauskienė, Erika
Štreimikienė, Dalia
description This paper proposes an integrated approach towards rapid decision-making in the agricultural sector aimed at improvement of its resilience. Methodologically, we seek to devise a framework that is able to take the uncertainty regarding policy preferences into account. Empirically, we focus on the effects of COVID-19 on agriculture. First, we propose a multi-criteria decision-making framework following the Pugh matrix approach for group decision-making. The Monte Carlo simulation is used to check the effects of the perturbations in the criteria weights. Then, we identify the factors behind agricultural resilience and organize them into the three groups (food security, agricultural viability, decent jobs). The expert survey is carried out to elicit the ratings in regard to the expected effects of the policy measures with respect to dimensions of agricultural resilience. The case of Lithuania is considered in the empirical analysis. The existing and newly proposed agricultural policy measures are taken into account. The measures related to alleviation of the financial burden (e.g., credit payment deferral) appear to be the most effective in accordance with the expert ratings.
doi_str_mv 10.3390/su132111899
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2596068192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815702874</galeid><sourcerecordid>A815702874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-9dbbe5e89232a57472c0c9fcfd4311bb6f208c3f8f177720194fb56e5c805cb93</originalsourceid><addsrcrecordid>eNptkttqGzEQhpeQQkOaq77AQK5C2VQH70G5M86hgZiGuL0WWlmyJ-yutpKWxHd5jfbx-iSVmxBiiOZCYub7_x_EZNlnSk45F-RrGClnlNJaiL3sgJGK5pQUZP_N-2N2FMI9SYdzKmh5kP25dS1qNAGs83CnBlzCHCOuVETXg7MQ1wZmHgOGv0-_4cJao2OANJuuPOqxjaNXLSzGYWg3MFsr7MMZTGGeJpgnYTQeFZwbnSySags6H2GxCdF08IBxDXPXxxSifOtggd3Y_g__lH2wqg3m6OU-zH5eXvyYfctvvl9dz6Y3ueZCxFwsm8YUphaMM1VUk4ppooXVdjnhlDZNaRmpNbe1pVVVMULFxDZFaQpdk0I3gh9mx8--g3e_RhOivHej71OkZIUoSVnT5P1KrVRrJPbWRa90h0HLaU2LirC6miTq9B0q1dJ0qF1vLKb-juBkR6C3X_EYV2oMQV4v7nbZL8-s9i4Eb6wcPHbKbyQlcrsC8s0K8H-GlaOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596068192</pqid></control><display><type>article</type><title>Policies for Rapid Mitigation of the Crisis’ Effects on Agricultural Supply Chains: A Multi-Criteria Decision Support System with Monte Carlo Simulation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Baležentis, Tomas ; Morkūnas, Mangirdas ; Žičkienė, Agnė ; Volkov, Artiom ; Ribašauskienė, Erika ; Štreimikienė, Dalia</creator><creatorcontrib>Baležentis, Tomas ; Morkūnas, Mangirdas ; Žičkienė, Agnė ; Volkov, Artiom ; Ribašauskienė, Erika ; Štreimikienė, Dalia</creatorcontrib><description>This paper proposes an integrated approach towards rapid decision-making in the agricultural sector aimed at improvement of its resilience. Methodologically, we seek to devise a framework that is able to take the uncertainty regarding policy preferences into account. Empirically, we focus on the effects of COVID-19 on agriculture. First, we propose a multi-criteria decision-making framework following the Pugh matrix approach for group decision-making. The Monte Carlo simulation is used to check the effects of the perturbations in the criteria weights. Then, we identify the factors behind agricultural resilience and organize them into the three groups (food security, agricultural viability, decent jobs). The expert survey is carried out to elicit the ratings in regard to the expected effects of the policy measures with respect to dimensions of agricultural resilience. The case of Lithuania is considered in the empirical analysis. The existing and newly proposed agricultural policy measures are taken into account. The measures related to alleviation of the financial burden (e.g., credit payment deferral) appear to be the most effective in accordance with the expert ratings.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su132111899</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural education ; Agricultural equipment and supplies industry ; Agricultural policy ; Agricultural research ; Cooperation ; Coronaviruses ; COVID-19 ; Crude oil prices ; Decision making ; Farm supplies ; Food security ; Food supply ; Labor force ; Laws, regulations and rules ; Management ; Medical research ; Methods ; Mitigation ; Monte Carlo method ; Monte Carlo simulation ; Multiple criterion ; Pandemics ; Resilience ; Services ; Supply chains ; Sustainability ; Wage &amp; price controls</subject><ispartof>Sustainability, 2021-11, Vol.13 (21), p.11899</ispartof><rights>COPYRIGHT 2021 MDPI AG</rights><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-9dbbe5e89232a57472c0c9fcfd4311bb6f208c3f8f177720194fb56e5c805cb93</citedby><cites>FETCH-LOGICAL-c399t-9dbbe5e89232a57472c0c9fcfd4311bb6f208c3f8f177720194fb56e5c805cb93</cites><orcidid>0000-0002-3247-9912 ; 0000-0002-3906-1711 ; 0000-0003-1394-3852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Baležentis, Tomas</creatorcontrib><creatorcontrib>Morkūnas, Mangirdas</creatorcontrib><creatorcontrib>Žičkienė, Agnė</creatorcontrib><creatorcontrib>Volkov, Artiom</creatorcontrib><creatorcontrib>Ribašauskienė, Erika</creatorcontrib><creatorcontrib>Štreimikienė, Dalia</creatorcontrib><title>Policies for Rapid Mitigation of the Crisis’ Effects on Agricultural Supply Chains: A Multi-Criteria Decision Support System with Monte Carlo Simulation</title><title>Sustainability</title><description>This paper proposes an integrated approach towards rapid decision-making in the agricultural sector aimed at improvement of its resilience. Methodologically, we seek to devise a framework that is able to take the uncertainty regarding policy preferences into account. Empirically, we focus on the effects of COVID-19 on agriculture. First, we propose a multi-criteria decision-making framework following the Pugh matrix approach for group decision-making. The Monte Carlo simulation is used to check the effects of the perturbations in the criteria weights. Then, we identify the factors behind agricultural resilience and organize them into the three groups (food security, agricultural viability, decent jobs). The expert survey is carried out to elicit the ratings in regard to the expected effects of the policy measures with respect to dimensions of agricultural resilience. The case of Lithuania is considered in the empirical analysis. The existing and newly proposed agricultural policy measures are taken into account. The measures related to alleviation of the financial burden (e.g., credit payment deferral) appear to be the most effective in accordance with the expert ratings.</description><subject>Agricultural education</subject><subject>Agricultural equipment and supplies industry</subject><subject>Agricultural policy</subject><subject>Agricultural research</subject><subject>Cooperation</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Crude oil prices</subject><subject>Decision making</subject><subject>Farm supplies</subject><subject>Food security</subject><subject>Food supply</subject><subject>Labor force</subject><subject>Laws, regulations and rules</subject><subject>Management</subject><subject>Medical research</subject><subject>Methods</subject><subject>Mitigation</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Multiple criterion</subject><subject>Pandemics</subject><subject>Resilience</subject><subject>Services</subject><subject>Supply chains</subject><subject>Sustainability</subject><subject>Wage &amp; price controls</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkttqGzEQhpeQQkOaq77AQK5C2VQH70G5M86hgZiGuL0WWlmyJ-yutpKWxHd5jfbx-iSVmxBiiOZCYub7_x_EZNlnSk45F-RrGClnlNJaiL3sgJGK5pQUZP_N-2N2FMI9SYdzKmh5kP25dS1qNAGs83CnBlzCHCOuVETXg7MQ1wZmHgOGv0-_4cJao2OANJuuPOqxjaNXLSzGYWg3MFsr7MMZTGGeJpgnYTQeFZwbnSySags6H2GxCdF08IBxDXPXxxSifOtggd3Y_g__lH2wqg3m6OU-zH5eXvyYfctvvl9dz6Y3ueZCxFwsm8YUphaMM1VUk4ppooXVdjnhlDZNaRmpNbe1pVVVMULFxDZFaQpdk0I3gh9mx8--g3e_RhOivHej71OkZIUoSVnT5P1KrVRrJPbWRa90h0HLaU2LirC6miTq9B0q1dJ0qF1vLKb-juBkR6C3X_EYV2oMQV4v7nbZL8-s9i4Eb6wcPHbKbyQlcrsC8s0K8H-GlaOU</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Baležentis, Tomas</creator><creator>Morkūnas, Mangirdas</creator><creator>Žičkienė, Agnė</creator><creator>Volkov, Artiom</creator><creator>Ribašauskienė, Erika</creator><creator>Štreimikienė, Dalia</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3247-9912</orcidid><orcidid>https://orcid.org/0000-0002-3906-1711</orcidid><orcidid>https://orcid.org/0000-0003-1394-3852</orcidid></search><sort><creationdate>20211101</creationdate><title>Policies for Rapid Mitigation of the Crisis’ Effects on Agricultural Supply Chains: A Multi-Criteria Decision Support System with Monte Carlo Simulation</title><author>Baležentis, Tomas ; Morkūnas, Mangirdas ; Žičkienė, Agnė ; Volkov, Artiom ; Ribašauskienė, Erika ; Štreimikienė, Dalia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-9dbbe5e89232a57472c0c9fcfd4311bb6f208c3f8f177720194fb56e5c805cb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural education</topic><topic>Agricultural equipment and supplies industry</topic><topic>Agricultural policy</topic><topic>Agricultural research</topic><topic>Cooperation</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Crude oil prices</topic><topic>Decision making</topic><topic>Farm supplies</topic><topic>Food security</topic><topic>Food supply</topic><topic>Labor force</topic><topic>Laws, regulations and rules</topic><topic>Management</topic><topic>Medical research</topic><topic>Methods</topic><topic>Mitigation</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Multiple criterion</topic><topic>Pandemics</topic><topic>Resilience</topic><topic>Services</topic><topic>Supply chains</topic><topic>Sustainability</topic><topic>Wage &amp; price controls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baležentis, Tomas</creatorcontrib><creatorcontrib>Morkūnas, Mangirdas</creatorcontrib><creatorcontrib>Žičkienė, Agnė</creatorcontrib><creatorcontrib>Volkov, Artiom</creatorcontrib><creatorcontrib>Ribašauskienė, Erika</creatorcontrib><creatorcontrib>Štreimikienė, Dalia</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baležentis, Tomas</au><au>Morkūnas, Mangirdas</au><au>Žičkienė, Agnė</au><au>Volkov, Artiom</au><au>Ribašauskienė, Erika</au><au>Štreimikienė, Dalia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Policies for Rapid Mitigation of the Crisis’ Effects on Agricultural Supply Chains: A Multi-Criteria Decision Support System with Monte Carlo Simulation</atitle><jtitle>Sustainability</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>13</volume><issue>21</issue><spage>11899</spage><pages>11899-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>This paper proposes an integrated approach towards rapid decision-making in the agricultural sector aimed at improvement of its resilience. Methodologically, we seek to devise a framework that is able to take the uncertainty regarding policy preferences into account. Empirically, we focus on the effects of COVID-19 on agriculture. First, we propose a multi-criteria decision-making framework following the Pugh matrix approach for group decision-making. The Monte Carlo simulation is used to check the effects of the perturbations in the criteria weights. Then, we identify the factors behind agricultural resilience and organize them into the three groups (food security, agricultural viability, decent jobs). The expert survey is carried out to elicit the ratings in regard to the expected effects of the policy measures with respect to dimensions of agricultural resilience. The case of Lithuania is considered in the empirical analysis. The existing and newly proposed agricultural policy measures are taken into account. The measures related to alleviation of the financial burden (e.g., credit payment deferral) appear to be the most effective in accordance with the expert ratings.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su132111899</doi><orcidid>https://orcid.org/0000-0002-3247-9912</orcidid><orcidid>https://orcid.org/0000-0002-3906-1711</orcidid><orcidid>https://orcid.org/0000-0003-1394-3852</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2021-11, Vol.13 (21), p.11899
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2596068192
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Agricultural education
Agricultural equipment and supplies industry
Agricultural policy
Agricultural research
Cooperation
Coronaviruses
COVID-19
Crude oil prices
Decision making
Farm supplies
Food security
Food supply
Labor force
Laws, regulations and rules
Management
Medical research
Methods
Mitigation
Monte Carlo method
Monte Carlo simulation
Multiple criterion
Pandemics
Resilience
Services
Supply chains
Sustainability
Wage & price controls
title Policies for Rapid Mitigation of the Crisis’ Effects on Agricultural Supply Chains: A Multi-Criteria Decision Support System with Monte Carlo Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Policies%20for%20Rapid%20Mitigation%20of%20the%20Crisis%E2%80%99%20Effects%20on%20Agricultural%20Supply%20Chains:%20A%20Multi-Criteria%20Decision%20Support%20System%20with%20Monte%20Carlo%20Simulation&rft.jtitle=Sustainability&rft.au=Bale%C5%BEentis,%20Tomas&rft.date=2021-11-01&rft.volume=13&rft.issue=21&rft.spage=11899&rft.pages=11899-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su132111899&rft_dat=%3Cgale_proqu%3EA815702874%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596068192&rft_id=info:pmid/&rft_galeid=A815702874&rfr_iscdi=true