An Indoor Positioning and Tracking Algorithm Based on Angle-of-Arrival Using a Dual-Channel Array Antenna
The angular position measurement of an array antenna based on a wireless signal has high accuracy in an indoor no-occlusion environment. However, due to the high complexity of indoor environments, signal occlusion, multipath, and other interfering factors are inevitable when users move randomly, whi...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-11, Vol.13 (21), p.4301, Article 4301 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | 4301 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 13 |
creator | Li, Chenhui Zhen, Jie Chang, Kanglong Xu, Aigong Zhu, Huizhong Wu, Jianxin |
description | The angular position measurement of an array antenna based on a wireless signal has high accuracy in an indoor no-occlusion environment. However, due to the high complexity of indoor environments, signal occlusion, multipath, and other interfering factors are inevitable when users move randomly, which can greatly reduce the positioning accuracy. In addition, different directions of the positioning source signal can also affect the positioning result. The switching wheels of the dual-polarization antenna array are collected in channel 1, the fast Fourier transform (FFT) is applied to the data of channel 2 to estimate the frequency offset, and the phase of the data is compensated. Using the FFT frequency offset estimation, the high-precision positioning of a single base station is realized using the dual-channel switch and dual-polarization antenna array in turn. Aiming at analyzing the affecting factors of the positioning system accuracy, the strong tracking kalman filter algorithm is studied. At the same time, the singular value decomposition of the covariance matrix is performed to improve the robustness of the strong tracking kalman filter, and the adaptive factor is introduced to improve the filtering accuracy. The proposed positioning algorithm can achieve the positioning accuracy within 1 m in the coverage area in a line-of-sight (LOS) environment, while the dynamic positioning accuracy within 1 m cannot be guaranteed in the coverage area in a non-line-of-sight (NLOS) environment. On this basis, the analysis of the static, rotational, and dynamic positioning accuracies of the source in the LOS and NLOS environments shows that the proposed singular value decomposition strong tracking kalman filter (SVD-STKF) algorithm can improve the overall positioning accuracy of the system by 0.03 m, and the maximum error in the LOS environment can be reduced by 0.08 m. The proposed SVD-STKF algorithm can correct the Hausdorff distance of dynamic positioning by up to 0.513 m in the NLOS environment where the system's positioning accuracy decreases sharply due to the signal shielding. Also, it can make the positioning results smoother and achieve a good correction effect for the points far away from the true trajectory. |
doi_str_mv | 10.3390/rs13214301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2596058603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_da1a1fa07dbd4183a10a689737e5021d</doaj_id><sourcerecordid>2596058603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-cdcaa0e5563999c1c233da21e1eb8e0cb9b27c892056e627c470c078b13d3f7d3</originalsourceid><addsrcrecordid>eNqNkc1u3CAURlHVSI0m2eQJkLpr5ZYLNpil6_6NFClZJGt0DXjC1IEUPK3y9rEzVdpl2XCBcz8Qh5ALYB-E0OxjLiA41ILBK3LKmeJVzTV__U_9hpyXsmfLEAI0q09J6CLdRpdSptephDmkGOKOYnT0JqP9sS66aZdymO_u6Scs3tEUaRd3k6_SWHU5h1840dvy3EY_H3Cq-juM0U90OcTHhZ19jHhGTkacij__M2_I7dcvN_336vLq27bvLisrJMyVdRaR-aaRQmttwXIhHHLw4IfWMzvogSvbas4a6eVS1opZptoBhBOjcmJDtsdcl3BvHnK4x_xoEgbzvJHyzmCeg528cQgIIzLlBldDKxAYylYroXzDOKxZb49ZDzn9PPgym3065Lg83_BGS9a0cvnJDXl3pGxOpWQ_vtwKzKxmzF8zC_z-CP_2QxqLDT5a_9KwmFGgQQq5Slrp9v_pPsy4CuzTIc7iCSBSn2s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596058603</pqid></control><display><type>article</type><title>An Indoor Positioning and Tracking Algorithm Based on Angle-of-Arrival Using a Dual-Channel Array Antenna</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Li, Chenhui ; Zhen, Jie ; Chang, Kanglong ; Xu, Aigong ; Zhu, Huizhong ; Wu, Jianxin</creator><creatorcontrib>Li, Chenhui ; Zhen, Jie ; Chang, Kanglong ; Xu, Aigong ; Zhu, Huizhong ; Wu, Jianxin</creatorcontrib><description>The angular position measurement of an array antenna based on a wireless signal has high accuracy in an indoor no-occlusion environment. However, due to the high complexity of indoor environments, signal occlusion, multipath, and other interfering factors are inevitable when users move randomly, which can greatly reduce the positioning accuracy. In addition, different directions of the positioning source signal can also affect the positioning result. The switching wheels of the dual-polarization antenna array are collected in channel 1, the fast Fourier transform (FFT) is applied to the data of channel 2 to estimate the frequency offset, and the phase of the data is compensated. Using the FFT frequency offset estimation, the high-precision positioning of a single base station is realized using the dual-channel switch and dual-polarization antenna array in turn. Aiming at analyzing the affecting factors of the positioning system accuracy, the strong tracking kalman filter algorithm is studied. At the same time, the singular value decomposition of the covariance matrix is performed to improve the robustness of the strong tracking kalman filter, and the adaptive factor is introduced to improve the filtering accuracy. The proposed positioning algorithm can achieve the positioning accuracy within 1 m in the coverage area in a line-of-sight (LOS) environment, while the dynamic positioning accuracy within 1 m cannot be guaranteed in the coverage area in a non-line-of-sight (NLOS) environment. On this basis, the analysis of the static, rotational, and dynamic positioning accuracies of the source in the LOS and NLOS environments shows that the proposed singular value decomposition strong tracking kalman filter (SVD-STKF) algorithm can improve the overall positioning accuracy of the system by 0.03 m, and the maximum error in the LOS environment can be reduced by 0.08 m. The proposed SVD-STKF algorithm can correct the Hausdorff distance of dynamic positioning by up to 0.513 m in the NLOS environment where the system's positioning accuracy decreases sharply due to the signal shielding. Also, it can make the positioning results smoother and achieve a good correction effect for the points far away from the true trajectory.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs13214301</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Accuracy ; Algorithms ; angular orientation ; Angular position ; Antenna arrays ; Antennas ; array antenna ; Covariance matrix ; Decomposition ; Dual polarization (waves) ; Environmental Sciences ; Environmental Sciences & Ecology ; Fast Fourier transformations ; Fourier analysis ; Fourier transforms ; Geology ; Geosciences, Multidisciplinary ; Imaging Science & Photographic Technology ; Indoor environments ; indoor localization ; Kalman filters ; Life Sciences & Biomedicine ; Line of sight ; Metric space ; Mutation ; Noise ; Occlusion ; Physical Sciences ; Polarization ; Position measurement ; Remote Sensing ; Satellite communications ; Science & Technology ; Shielding ; Signal processing ; Singular value decomposition ; strong tracking kalman filter ; Systems stability ; Technology ; Tracking</subject><ispartof>Remote sensing (Basel, Switzerland), 2021-11, Vol.13 (21), p.4301, Article 4301</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000719163600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c361t-cdcaa0e5563999c1c233da21e1eb8e0cb9b27c892056e627c470c078b13d3f7d3</citedby><cites>FETCH-LOGICAL-c361t-cdcaa0e5563999c1c233da21e1eb8e0cb9b27c892056e627c470c078b13d3f7d3</cites><orcidid>0000-0001-9835-2650 ; 0000-0002-8605-6536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Li, Chenhui</creatorcontrib><creatorcontrib>Zhen, Jie</creatorcontrib><creatorcontrib>Chang, Kanglong</creatorcontrib><creatorcontrib>Xu, Aigong</creatorcontrib><creatorcontrib>Zhu, Huizhong</creatorcontrib><creatorcontrib>Wu, Jianxin</creatorcontrib><title>An Indoor Positioning and Tracking Algorithm Based on Angle-of-Arrival Using a Dual-Channel Array Antenna</title><title>Remote sensing (Basel, Switzerland)</title><addtitle>REMOTE SENS-BASEL</addtitle><description>The angular position measurement of an array antenna based on a wireless signal has high accuracy in an indoor no-occlusion environment. However, due to the high complexity of indoor environments, signal occlusion, multipath, and other interfering factors are inevitable when users move randomly, which can greatly reduce the positioning accuracy. In addition, different directions of the positioning source signal can also affect the positioning result. The switching wheels of the dual-polarization antenna array are collected in channel 1, the fast Fourier transform (FFT) is applied to the data of channel 2 to estimate the frequency offset, and the phase of the data is compensated. Using the FFT frequency offset estimation, the high-precision positioning of a single base station is realized using the dual-channel switch and dual-polarization antenna array in turn. Aiming at analyzing the affecting factors of the positioning system accuracy, the strong tracking kalman filter algorithm is studied. At the same time, the singular value decomposition of the covariance matrix is performed to improve the robustness of the strong tracking kalman filter, and the adaptive factor is introduced to improve the filtering accuracy. The proposed positioning algorithm can achieve the positioning accuracy within 1 m in the coverage area in a line-of-sight (LOS) environment, while the dynamic positioning accuracy within 1 m cannot be guaranteed in the coverage area in a non-line-of-sight (NLOS) environment. On this basis, the analysis of the static, rotational, and dynamic positioning accuracies of the source in the LOS and NLOS environments shows that the proposed singular value decomposition strong tracking kalman filter (SVD-STKF) algorithm can improve the overall positioning accuracy of the system by 0.03 m, and the maximum error in the LOS environment can be reduced by 0.08 m. The proposed SVD-STKF algorithm can correct the Hausdorff distance of dynamic positioning by up to 0.513 m in the NLOS environment where the system's positioning accuracy decreases sharply due to the signal shielding. Also, it can make the positioning results smoother and achieve a good correction effect for the points far away from the true trajectory.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>angular orientation</subject><subject>Angular position</subject><subject>Antenna arrays</subject><subject>Antennas</subject><subject>array antenna</subject><subject>Covariance matrix</subject><subject>Decomposition</subject><subject>Dual polarization (waves)</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences & Ecology</subject><subject>Fast Fourier transformations</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Imaging Science & Photographic Technology</subject><subject>Indoor environments</subject><subject>indoor localization</subject><subject>Kalman filters</subject><subject>Life Sciences & Biomedicine</subject><subject>Line of sight</subject><subject>Metric space</subject><subject>Mutation</subject><subject>Noise</subject><subject>Occlusion</subject><subject>Physical Sciences</subject><subject>Polarization</subject><subject>Position measurement</subject><subject>Remote Sensing</subject><subject>Satellite communications</subject><subject>Science & Technology</subject><subject>Shielding</subject><subject>Signal processing</subject><subject>Singular value decomposition</subject><subject>strong tracking kalman filter</subject><subject>Systems stability</subject><subject>Technology</subject><subject>Tracking</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkc1u3CAURlHVSI0m2eQJkLpr5ZYLNpil6_6NFClZJGt0DXjC1IEUPK3y9rEzVdpl2XCBcz8Qh5ALYB-E0OxjLiA41ILBK3LKmeJVzTV__U_9hpyXsmfLEAI0q09J6CLdRpdSptephDmkGOKOYnT0JqP9sS66aZdymO_u6Scs3tEUaRd3k6_SWHU5h1840dvy3EY_H3Cq-juM0U90OcTHhZ19jHhGTkacij__M2_I7dcvN_336vLq27bvLisrJMyVdRaR-aaRQmttwXIhHHLw4IfWMzvogSvbas4a6eVS1opZptoBhBOjcmJDtsdcl3BvHnK4x_xoEgbzvJHyzmCeg528cQgIIzLlBldDKxAYylYroXzDOKxZb49ZDzn9PPgym3065Lg83_BGS9a0cvnJDXl3pGxOpWQ_vtwKzKxmzF8zC_z-CP_2QxqLDT5a_9KwmFGgQQq5Slrp9v_pPsy4CuzTIc7iCSBSn2s</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Li, Chenhui</creator><creator>Zhen, Jie</creator><creator>Chang, Kanglong</creator><creator>Xu, Aigong</creator><creator>Zhu, Huizhong</creator><creator>Wu, Jianxin</creator><general>Mdpi</general><general>MDPI AG</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9835-2650</orcidid><orcidid>https://orcid.org/0000-0002-8605-6536</orcidid></search><sort><creationdate>20211101</creationdate><title>An Indoor Positioning and Tracking Algorithm Based on Angle-of-Arrival Using a Dual-Channel Array Antenna</title><author>Li, Chenhui ; Zhen, Jie ; Chang, Kanglong ; Xu, Aigong ; Zhu, Huizhong ; Wu, Jianxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-cdcaa0e5563999c1c233da21e1eb8e0cb9b27c892056e627c470c078b13d3f7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>angular orientation</topic><topic>Angular position</topic><topic>Antenna arrays</topic><topic>Antennas</topic><topic>array antenna</topic><topic>Covariance matrix</topic><topic>Decomposition</topic><topic>Dual polarization (waves)</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences & Ecology</topic><topic>Fast Fourier transformations</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Imaging Science & Photographic Technology</topic><topic>Indoor environments</topic><topic>indoor localization</topic><topic>Kalman filters</topic><topic>Life Sciences & Biomedicine</topic><topic>Line of sight</topic><topic>Metric space</topic><topic>Mutation</topic><topic>Noise</topic><topic>Occlusion</topic><topic>Physical Sciences</topic><topic>Polarization</topic><topic>Position measurement</topic><topic>Remote Sensing</topic><topic>Satellite communications</topic><topic>Science & Technology</topic><topic>Shielding</topic><topic>Signal processing</topic><topic>Singular value decomposition</topic><topic>strong tracking kalman filter</topic><topic>Systems stability</topic><topic>Technology</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chenhui</creatorcontrib><creatorcontrib>Zhen, Jie</creatorcontrib><creatorcontrib>Chang, Kanglong</creatorcontrib><creatorcontrib>Xu, Aigong</creatorcontrib><creatorcontrib>Zhu, Huizhong</creatorcontrib><creatorcontrib>Wu, Jianxin</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chenhui</au><au>Zhen, Jie</au><au>Chang, Kanglong</au><au>Xu, Aigong</au><au>Zhu, Huizhong</au><au>Wu, Jianxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Indoor Positioning and Tracking Algorithm Based on Angle-of-Arrival Using a Dual-Channel Array Antenna</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><stitle>REMOTE SENS-BASEL</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>13</volume><issue>21</issue><spage>4301</spage><pages>4301-</pages><artnum>4301</artnum><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>The angular position measurement of an array antenna based on a wireless signal has high accuracy in an indoor no-occlusion environment. However, due to the high complexity of indoor environments, signal occlusion, multipath, and other interfering factors are inevitable when users move randomly, which can greatly reduce the positioning accuracy. In addition, different directions of the positioning source signal can also affect the positioning result. The switching wheels of the dual-polarization antenna array are collected in channel 1, the fast Fourier transform (FFT) is applied to the data of channel 2 to estimate the frequency offset, and the phase of the data is compensated. Using the FFT frequency offset estimation, the high-precision positioning of a single base station is realized using the dual-channel switch and dual-polarization antenna array in turn. Aiming at analyzing the affecting factors of the positioning system accuracy, the strong tracking kalman filter algorithm is studied. At the same time, the singular value decomposition of the covariance matrix is performed to improve the robustness of the strong tracking kalman filter, and the adaptive factor is introduced to improve the filtering accuracy. The proposed positioning algorithm can achieve the positioning accuracy within 1 m in the coverage area in a line-of-sight (LOS) environment, while the dynamic positioning accuracy within 1 m cannot be guaranteed in the coverage area in a non-line-of-sight (NLOS) environment. On this basis, the analysis of the static, rotational, and dynamic positioning accuracies of the source in the LOS and NLOS environments shows that the proposed singular value decomposition strong tracking kalman filter (SVD-STKF) algorithm can improve the overall positioning accuracy of the system by 0.03 m, and the maximum error in the LOS environment can be reduced by 0.08 m. The proposed SVD-STKF algorithm can correct the Hausdorff distance of dynamic positioning by up to 0.513 m in the NLOS environment where the system's positioning accuracy decreases sharply due to the signal shielding. Also, it can make the positioning results smoother and achieve a good correction effect for the points far away from the true trajectory.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/rs13214301</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-9835-2650</orcidid><orcidid>https://orcid.org/0000-0002-8605-6536</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2021-11, Vol.13 (21), p.4301, Article 4301 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_proquest_journals_2596058603 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Accuracy Algorithms angular orientation Angular position Antenna arrays Antennas array antenna Covariance matrix Decomposition Dual polarization (waves) Environmental Sciences Environmental Sciences & Ecology Fast Fourier transformations Fourier analysis Fourier transforms Geology Geosciences, Multidisciplinary Imaging Science & Photographic Technology Indoor environments indoor localization Kalman filters Life Sciences & Biomedicine Line of sight Metric space Mutation Noise Occlusion Physical Sciences Polarization Position measurement Remote Sensing Satellite communications Science & Technology Shielding Signal processing Singular value decomposition strong tracking kalman filter Systems stability Technology Tracking |
title | An Indoor Positioning and Tracking Algorithm Based on Angle-of-Arrival Using a Dual-Channel Array Antenna |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Indoor%20Positioning%20and%20Tracking%20Algorithm%20Based%20on%20Angle-of-Arrival%20Using%20a%20Dual-Channel%20Array%20Antenna&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Li,%20Chenhui&rft.date=2021-11-01&rft.volume=13&rft.issue=21&rft.spage=4301&rft.pages=4301-&rft.artnum=4301&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs13214301&rft_dat=%3Cproquest_doaj_%3E2596058603%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596058603&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_da1a1fa07dbd4183a10a689737e5021d&rfr_iscdi=true |