YOLO-RTUAV: Towards Real-Time Vehicle Detection through Aerial Images with Low-Cost Edge Devices

Object detection in aerial images has been an active research area thanks to the vast availability of unmanned aerial vehicles (UAVs). Along with the increase of computational power, deep learning algorithms are commonly used for object detection tasks. However, aerial images have large variations,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2021-11, Vol.13 (21), p.4196, Article 4196
Hauptverfasser: Koay, Hong Vin, Chuah, Joon Huang, Chow, Chee-Onn, Chang, Yang-Lang, Yong, Keh Kok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 4196
container_title Remote sensing (Basel, Switzerland)
container_volume 13
creator Koay, Hong Vin
Chuah, Joon Huang
Chow, Chee-Onn
Chang, Yang-Lang
Yong, Keh Kok
description Object detection in aerial images has been an active research area thanks to the vast availability of unmanned aerial vehicles (UAVs). Along with the increase of computational power, deep learning algorithms are commonly used for object detection tasks. However, aerial images have large variations, and the object sizes are usually small, rendering lower detection accuracy. Besides, real-time inferencing on low-cost edge devices remains an open-ended question. In this work, we explored the usage of state-of-the-art deep learning object detection on low-cost edge hardware. We propose YOLO-RTUAV, an improved version of YOLOv4-Tiny, as the solution. We benchmarked our proposed models with various state-of-the-art models on the VAID and COWC datasets. Our proposed model can achieve higher mean average precision (mAP) and frames per second (FPS) than other state-of-the-art tiny YOLO models, especially on a low-cost edge device such as the Jetson Nano 2 GB. It was observed that the Jetson Nano 2 GB can achieve up to 12.8 FPS with a model size of only 5.5 MB.
doi_str_mv 10.3390/rs13214196
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596058435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fac6d570a1b34a55a1fd799b620df404</doaj_id><sourcerecordid>2596058435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-2fea9a13ded21c4582e66b5326721eefa9596c8c0daad5243442fddd22fc2c153</originalsourceid><addsrcrecordid>eNqNkU1rGzEQhpeSQkOaS3-BoLeUbfW5u8rNbNLEYDAEJ9CTOpZGtoxtpZIc03_f3bqkPVYXieGZd0Y8VfWB0c9CaPolZSY4k0w3b6pzTlteS6752T_vd9Vlzhs6HCGYpvK8-v5tPpvXD4vHydM1WcQjJJfJA8K2XoQdkidcB7tFcoMFbQlxT8o6xcNqTSaYAmzJdAcrzOQYyprM4rHuYy7k1q3GlpdgMb-v3nrYZrz8c19Uj19vF_19PZvfTfvJrLaiYaXmHkEDEw4dZ1aqjmPTLJXgTcsZogetdGM7Sx2AU1wKKbl3znHuLbdMiYtqesp1ETbmOYUdpJ8mQjC_CzGtDKQyfsZ4sI1TLQW2FBKUAuZdq_Wy4dR5SeWQ9fGU9ZzijwPmYjbxkPbD-oYPa1DVSTFOvDpRNsWcE_rXqYyaUYj5K2SAP53gIy6jzzbg3uJrwyCkHXx0rB3dsIHu_p_uQ4FRTR8P-yJ-ASv4nC8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596058435</pqid></control><display><type>article</type><title>YOLO-RTUAV: Towards Real-Time Vehicle Detection through Aerial Images with Low-Cost Edge Devices</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Koay, Hong Vin ; Chuah, Joon Huang ; Chow, Chee-Onn ; Chang, Yang-Lang ; Yong, Keh Kok</creator><creatorcontrib>Koay, Hong Vin ; Chuah, Joon Huang ; Chow, Chee-Onn ; Chang, Yang-Lang ; Yong, Keh Kok</creatorcontrib><description>Object detection in aerial images has been an active research area thanks to the vast availability of unmanned aerial vehicles (UAVs). Along with the increase of computational power, deep learning algorithms are commonly used for object detection tasks. However, aerial images have large variations, and the object sizes are usually small, rendering lower detection accuracy. Besides, real-time inferencing on low-cost edge devices remains an open-ended question. In this work, we explored the usage of state-of-the-art deep learning object detection on low-cost edge hardware. We propose YOLO-RTUAV, an improved version of YOLOv4-Tiny, as the solution. We benchmarked our proposed models with various state-of-the-art models on the VAID and COWC datasets. Our proposed model can achieve higher mean average precision (mAP) and frames per second (FPS) than other state-of-the-art tiny YOLO models, especially on a low-cost edge device such as the Jetson Nano 2 GB. It was observed that the Jetson Nano 2 GB can achieve up to 12.8 FPS with a model size of only 5.5 MB.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs13214196</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Accuracy ; aerial imaging ; Algorithms ; Altitude ; Computer applications ; Deep learning ; Drones ; Environmental Sciences ; Environmental Sciences &amp; Ecology ; Frames per second ; Geology ; Geosciences, Multidisciplinary ; Imaging Science &amp; Photographic Technology ; Learning algorithms ; Life Sciences &amp; Biomedicine ; Low cost ; Machine learning ; Neural networks ; object detection ; Object recognition ; Physical Sciences ; Real time ; real-time detection ; Remote Sensing ; Science &amp; Technology ; Sensors ; Support vector machines ; Technology ; Unmanned aerial vehicles ; Vehicles</subject><ispartof>Remote sensing (Basel, Switzerland), 2021-11, Vol.13 (21), p.4196, Article 4196</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000719081700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c361t-2fea9a13ded21c4582e66b5326721eefa9596c8c0daad5243442fddd22fc2c153</citedby><cites>FETCH-LOGICAL-c361t-2fea9a13ded21c4582e66b5326721eefa9596c8c0daad5243442fddd22fc2c153</cites><orcidid>0000-0002-5834-1057 ; 0000-0001-6044-2650 ; 0000-0002-8428-093X ; 0000-0001-9058-3497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Koay, Hong Vin</creatorcontrib><creatorcontrib>Chuah, Joon Huang</creatorcontrib><creatorcontrib>Chow, Chee-Onn</creatorcontrib><creatorcontrib>Chang, Yang-Lang</creatorcontrib><creatorcontrib>Yong, Keh Kok</creatorcontrib><title>YOLO-RTUAV: Towards Real-Time Vehicle Detection through Aerial Images with Low-Cost Edge Devices</title><title>Remote sensing (Basel, Switzerland)</title><addtitle>REMOTE SENS-BASEL</addtitle><description>Object detection in aerial images has been an active research area thanks to the vast availability of unmanned aerial vehicles (UAVs). Along with the increase of computational power, deep learning algorithms are commonly used for object detection tasks. However, aerial images have large variations, and the object sizes are usually small, rendering lower detection accuracy. Besides, real-time inferencing on low-cost edge devices remains an open-ended question. In this work, we explored the usage of state-of-the-art deep learning object detection on low-cost edge hardware. We propose YOLO-RTUAV, an improved version of YOLOv4-Tiny, as the solution. We benchmarked our proposed models with various state-of-the-art models on the VAID and COWC datasets. Our proposed model can achieve higher mean average precision (mAP) and frames per second (FPS) than other state-of-the-art tiny YOLO models, especially on a low-cost edge device such as the Jetson Nano 2 GB. It was observed that the Jetson Nano 2 GB can achieve up to 12.8 FPS with a model size of only 5.5 MB.</description><subject>Accuracy</subject><subject>aerial imaging</subject><subject>Algorithms</subject><subject>Altitude</subject><subject>Computer applications</subject><subject>Deep learning</subject><subject>Drones</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Frames per second</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Imaging Science &amp; Photographic Technology</subject><subject>Learning algorithms</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Low cost</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>object detection</subject><subject>Object recognition</subject><subject>Physical Sciences</subject><subject>Real time</subject><subject>real-time detection</subject><subject>Remote Sensing</subject><subject>Science &amp; Technology</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>Technology</subject><subject>Unmanned aerial vehicles</subject><subject>Vehicles</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1rGzEQhpeSQkOaS3-BoLeUbfW5u8rNbNLEYDAEJ9CTOpZGtoxtpZIc03_f3bqkPVYXieGZd0Y8VfWB0c9CaPolZSY4k0w3b6pzTlteS6752T_vd9Vlzhs6HCGYpvK8-v5tPpvXD4vHydM1WcQjJJfJA8K2XoQdkidcB7tFcoMFbQlxT8o6xcNqTSaYAmzJdAcrzOQYyprM4rHuYy7k1q3GlpdgMb-v3nrYZrz8c19Uj19vF_19PZvfTfvJrLaiYaXmHkEDEw4dZ1aqjmPTLJXgTcsZogetdGM7Sx2AU1wKKbl3znHuLbdMiYtqesp1ETbmOYUdpJ8mQjC_CzGtDKQyfsZ4sI1TLQW2FBKUAuZdq_Wy4dR5SeWQ9fGU9ZzijwPmYjbxkPbD-oYPa1DVSTFOvDpRNsWcE_rXqYyaUYj5K2SAP53gIy6jzzbg3uJrwyCkHXx0rB3dsIHu_p_uQ4FRTR8P-yJ-ASv4nC8</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Koay, Hong Vin</creator><creator>Chuah, Joon Huang</creator><creator>Chow, Chee-Onn</creator><creator>Chang, Yang-Lang</creator><creator>Yong, Keh Kok</creator><general>Mdpi</general><general>MDPI AG</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5834-1057</orcidid><orcidid>https://orcid.org/0000-0001-6044-2650</orcidid><orcidid>https://orcid.org/0000-0002-8428-093X</orcidid><orcidid>https://orcid.org/0000-0001-9058-3497</orcidid></search><sort><creationdate>20211101</creationdate><title>YOLO-RTUAV: Towards Real-Time Vehicle Detection through Aerial Images with Low-Cost Edge Devices</title><author>Koay, Hong Vin ; Chuah, Joon Huang ; Chow, Chee-Onn ; Chang, Yang-Lang ; Yong, Keh Kok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-2fea9a13ded21c4582e66b5326721eefa9596c8c0daad5243442fddd22fc2c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>aerial imaging</topic><topic>Algorithms</topic><topic>Altitude</topic><topic>Computer applications</topic><topic>Deep learning</topic><topic>Drones</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Frames per second</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Imaging Science &amp; Photographic Technology</topic><topic>Learning algorithms</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Low cost</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>object detection</topic><topic>Object recognition</topic><topic>Physical Sciences</topic><topic>Real time</topic><topic>real-time detection</topic><topic>Remote Sensing</topic><topic>Science &amp; Technology</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>Technology</topic><topic>Unmanned aerial vehicles</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koay, Hong Vin</creatorcontrib><creatorcontrib>Chuah, Joon Huang</creatorcontrib><creatorcontrib>Chow, Chee-Onn</creatorcontrib><creatorcontrib>Chang, Yang-Lang</creatorcontrib><creatorcontrib>Yong, Keh Kok</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koay, Hong Vin</au><au>Chuah, Joon Huang</au><au>Chow, Chee-Onn</au><au>Chang, Yang-Lang</au><au>Yong, Keh Kok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>YOLO-RTUAV: Towards Real-Time Vehicle Detection through Aerial Images with Low-Cost Edge Devices</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><stitle>REMOTE SENS-BASEL</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>13</volume><issue>21</issue><spage>4196</spage><pages>4196-</pages><artnum>4196</artnum><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Object detection in aerial images has been an active research area thanks to the vast availability of unmanned aerial vehicles (UAVs). Along with the increase of computational power, deep learning algorithms are commonly used for object detection tasks. However, aerial images have large variations, and the object sizes are usually small, rendering lower detection accuracy. Besides, real-time inferencing on low-cost edge devices remains an open-ended question. In this work, we explored the usage of state-of-the-art deep learning object detection on low-cost edge hardware. We propose YOLO-RTUAV, an improved version of YOLOv4-Tiny, as the solution. We benchmarked our proposed models with various state-of-the-art models on the VAID and COWC datasets. Our proposed model can achieve higher mean average precision (mAP) and frames per second (FPS) than other state-of-the-art tiny YOLO models, especially on a low-cost edge device such as the Jetson Nano 2 GB. It was observed that the Jetson Nano 2 GB can achieve up to 12.8 FPS with a model size of only 5.5 MB.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/rs13214196</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-5834-1057</orcidid><orcidid>https://orcid.org/0000-0001-6044-2650</orcidid><orcidid>https://orcid.org/0000-0002-8428-093X</orcidid><orcidid>https://orcid.org/0000-0001-9058-3497</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2021-11, Vol.13 (21), p.4196, Article 4196
issn 2072-4292
2072-4292
language eng
recordid cdi_proquest_journals_2596058435
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
aerial imaging
Algorithms
Altitude
Computer applications
Deep learning
Drones
Environmental Sciences
Environmental Sciences & Ecology
Frames per second
Geology
Geosciences, Multidisciplinary
Imaging Science & Photographic Technology
Learning algorithms
Life Sciences & Biomedicine
Low cost
Machine learning
Neural networks
object detection
Object recognition
Physical Sciences
Real time
real-time detection
Remote Sensing
Science & Technology
Sensors
Support vector machines
Technology
Unmanned aerial vehicles
Vehicles
title YOLO-RTUAV: Towards Real-Time Vehicle Detection through Aerial Images with Low-Cost Edge Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=YOLO-RTUAV:%20Towards%20Real-Time%20Vehicle%20Detection%20through%20Aerial%20Images%20with%20Low-Cost%20Edge%20Devices&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Koay,%20Hong%20Vin&rft.date=2021-11-01&rft.volume=13&rft.issue=21&rft.spage=4196&rft.pages=4196-&rft.artnum=4196&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs13214196&rft_dat=%3Cproquest_cross%3E2596058435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596058435&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_fac6d570a1b34a55a1fd799b620df404&rfr_iscdi=true