YOLO-RTUAV: Towards Real-Time Vehicle Detection through Aerial Images with Low-Cost Edge Devices
Object detection in aerial images has been an active research area thanks to the vast availability of unmanned aerial vehicles (UAVs). Along with the increase of computational power, deep learning algorithms are commonly used for object detection tasks. However, aerial images have large variations,...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-11, Vol.13 (21), p.4196, Article 4196 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | 4196 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 13 |
creator | Koay, Hong Vin Chuah, Joon Huang Chow, Chee-Onn Chang, Yang-Lang Yong, Keh Kok |
description | Object detection in aerial images has been an active research area thanks to the vast availability of unmanned aerial vehicles (UAVs). Along with the increase of computational power, deep learning algorithms are commonly used for object detection tasks. However, aerial images have large variations, and the object sizes are usually small, rendering lower detection accuracy. Besides, real-time inferencing on low-cost edge devices remains an open-ended question. In this work, we explored the usage of state-of-the-art deep learning object detection on low-cost edge hardware. We propose YOLO-RTUAV, an improved version of YOLOv4-Tiny, as the solution. We benchmarked our proposed models with various state-of-the-art models on the VAID and COWC datasets. Our proposed model can achieve higher mean average precision (mAP) and frames per second (FPS) than other state-of-the-art tiny YOLO models, especially on a low-cost edge device such as the Jetson Nano 2 GB. It was observed that the Jetson Nano 2 GB can achieve up to 12.8 FPS with a model size of only 5.5 MB. |
doi_str_mv | 10.3390/rs13214196 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596058435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fac6d570a1b34a55a1fd799b620df404</doaj_id><sourcerecordid>2596058435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-2fea9a13ded21c4582e66b5326721eefa9596c8c0daad5243442fddd22fc2c153</originalsourceid><addsrcrecordid>eNqNkU1rGzEQhpeSQkOaS3-BoLeUbfW5u8rNbNLEYDAEJ9CTOpZGtoxtpZIc03_f3bqkPVYXieGZd0Y8VfWB0c9CaPolZSY4k0w3b6pzTlteS6752T_vd9Vlzhs6HCGYpvK8-v5tPpvXD4vHydM1WcQjJJfJA8K2XoQdkidcB7tFcoMFbQlxT8o6xcNqTSaYAmzJdAcrzOQYyprM4rHuYy7k1q3GlpdgMb-v3nrYZrz8c19Uj19vF_19PZvfTfvJrLaiYaXmHkEDEw4dZ1aqjmPTLJXgTcsZogetdGM7Sx2AU1wKKbl3znHuLbdMiYtqesp1ETbmOYUdpJ8mQjC_CzGtDKQyfsZ4sI1TLQW2FBKUAuZdq_Wy4dR5SeWQ9fGU9ZzijwPmYjbxkPbD-oYPa1DVSTFOvDpRNsWcE_rXqYyaUYj5K2SAP53gIy6jzzbg3uJrwyCkHXx0rB3dsIHu_p_uQ4FRTR8P-yJ-ASv4nC8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596058435</pqid></control><display><type>article</type><title>YOLO-RTUAV: Towards Real-Time Vehicle Detection through Aerial Images with Low-Cost Edge Devices</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Koay, Hong Vin ; Chuah, Joon Huang ; Chow, Chee-Onn ; Chang, Yang-Lang ; Yong, Keh Kok</creator><creatorcontrib>Koay, Hong Vin ; Chuah, Joon Huang ; Chow, Chee-Onn ; Chang, Yang-Lang ; Yong, Keh Kok</creatorcontrib><description>Object detection in aerial images has been an active research area thanks to the vast availability of unmanned aerial vehicles (UAVs). Along with the increase of computational power, deep learning algorithms are commonly used for object detection tasks. However, aerial images have large variations, and the object sizes are usually small, rendering lower detection accuracy. Besides, real-time inferencing on low-cost edge devices remains an open-ended question. In this work, we explored the usage of state-of-the-art deep learning object detection on low-cost edge hardware. We propose YOLO-RTUAV, an improved version of YOLOv4-Tiny, as the solution. We benchmarked our proposed models with various state-of-the-art models on the VAID and COWC datasets. Our proposed model can achieve higher mean average precision (mAP) and frames per second (FPS) than other state-of-the-art tiny YOLO models, especially on a low-cost edge device such as the Jetson Nano 2 GB. It was observed that the Jetson Nano 2 GB can achieve up to 12.8 FPS with a model size of only 5.5 MB.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs13214196</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Accuracy ; aerial imaging ; Algorithms ; Altitude ; Computer applications ; Deep learning ; Drones ; Environmental Sciences ; Environmental Sciences & Ecology ; Frames per second ; Geology ; Geosciences, Multidisciplinary ; Imaging Science & Photographic Technology ; Learning algorithms ; Life Sciences & Biomedicine ; Low cost ; Machine learning ; Neural networks ; object detection ; Object recognition ; Physical Sciences ; Real time ; real-time detection ; Remote Sensing ; Science & Technology ; Sensors ; Support vector machines ; Technology ; Unmanned aerial vehicles ; Vehicles</subject><ispartof>Remote sensing (Basel, Switzerland), 2021-11, Vol.13 (21), p.4196, Article 4196</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000719081700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c361t-2fea9a13ded21c4582e66b5326721eefa9596c8c0daad5243442fddd22fc2c153</citedby><cites>FETCH-LOGICAL-c361t-2fea9a13ded21c4582e66b5326721eefa9596c8c0daad5243442fddd22fc2c153</cites><orcidid>0000-0002-5834-1057 ; 0000-0001-6044-2650 ; 0000-0002-8428-093X ; 0000-0001-9058-3497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Koay, Hong Vin</creatorcontrib><creatorcontrib>Chuah, Joon Huang</creatorcontrib><creatorcontrib>Chow, Chee-Onn</creatorcontrib><creatorcontrib>Chang, Yang-Lang</creatorcontrib><creatorcontrib>Yong, Keh Kok</creatorcontrib><title>YOLO-RTUAV: Towards Real-Time Vehicle Detection through Aerial Images with Low-Cost Edge Devices</title><title>Remote sensing (Basel, Switzerland)</title><addtitle>REMOTE SENS-BASEL</addtitle><description>Object detection in aerial images has been an active research area thanks to the vast availability of unmanned aerial vehicles (UAVs). Along with the increase of computational power, deep learning algorithms are commonly used for object detection tasks. However, aerial images have large variations, and the object sizes are usually small, rendering lower detection accuracy. Besides, real-time inferencing on low-cost edge devices remains an open-ended question. In this work, we explored the usage of state-of-the-art deep learning object detection on low-cost edge hardware. We propose YOLO-RTUAV, an improved version of YOLOv4-Tiny, as the solution. We benchmarked our proposed models with various state-of-the-art models on the VAID and COWC datasets. Our proposed model can achieve higher mean average precision (mAP) and frames per second (FPS) than other state-of-the-art tiny YOLO models, especially on a low-cost edge device such as the Jetson Nano 2 GB. It was observed that the Jetson Nano 2 GB can achieve up to 12.8 FPS with a model size of only 5.5 MB.</description><subject>Accuracy</subject><subject>aerial imaging</subject><subject>Algorithms</subject><subject>Altitude</subject><subject>Computer applications</subject><subject>Deep learning</subject><subject>Drones</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences & Ecology</subject><subject>Frames per second</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Imaging Science & Photographic Technology</subject><subject>Learning algorithms</subject><subject>Life Sciences & Biomedicine</subject><subject>Low cost</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>object detection</subject><subject>Object recognition</subject><subject>Physical Sciences</subject><subject>Real time</subject><subject>real-time detection</subject><subject>Remote Sensing</subject><subject>Science & Technology</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>Technology</subject><subject>Unmanned aerial vehicles</subject><subject>Vehicles</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1rGzEQhpeSQkOaS3-BoLeUbfW5u8rNbNLEYDAEJ9CTOpZGtoxtpZIc03_f3bqkPVYXieGZd0Y8VfWB0c9CaPolZSY4k0w3b6pzTlteS6752T_vd9Vlzhs6HCGYpvK8-v5tPpvXD4vHydM1WcQjJJfJA8K2XoQdkidcB7tFcoMFbQlxT8o6xcNqTSaYAmzJdAcrzOQYyprM4rHuYy7k1q3GlpdgMb-v3nrYZrz8c19Uj19vF_19PZvfTfvJrLaiYaXmHkEDEw4dZ1aqjmPTLJXgTcsZogetdGM7Sx2AU1wKKbl3znHuLbdMiYtqesp1ETbmOYUdpJ8mQjC_CzGtDKQyfsZ4sI1TLQW2FBKUAuZdq_Wy4dR5SeWQ9fGU9ZzijwPmYjbxkPbD-oYPa1DVSTFOvDpRNsWcE_rXqYyaUYj5K2SAP53gIy6jzzbg3uJrwyCkHXx0rB3dsIHu_p_uQ4FRTR8P-yJ-ASv4nC8</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Koay, Hong Vin</creator><creator>Chuah, Joon Huang</creator><creator>Chow, Chee-Onn</creator><creator>Chang, Yang-Lang</creator><creator>Yong, Keh Kok</creator><general>Mdpi</general><general>MDPI AG</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5834-1057</orcidid><orcidid>https://orcid.org/0000-0001-6044-2650</orcidid><orcidid>https://orcid.org/0000-0002-8428-093X</orcidid><orcidid>https://orcid.org/0000-0001-9058-3497</orcidid></search><sort><creationdate>20211101</creationdate><title>YOLO-RTUAV: Towards Real-Time Vehicle Detection through Aerial Images with Low-Cost Edge Devices</title><author>Koay, Hong Vin ; Chuah, Joon Huang ; Chow, Chee-Onn ; Chang, Yang-Lang ; Yong, Keh Kok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-2fea9a13ded21c4582e66b5326721eefa9596c8c0daad5243442fddd22fc2c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>aerial imaging</topic><topic>Algorithms</topic><topic>Altitude</topic><topic>Computer applications</topic><topic>Deep learning</topic><topic>Drones</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences & Ecology</topic><topic>Frames per second</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Imaging Science & Photographic Technology</topic><topic>Learning algorithms</topic><topic>Life Sciences & Biomedicine</topic><topic>Low cost</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>object detection</topic><topic>Object recognition</topic><topic>Physical Sciences</topic><topic>Real time</topic><topic>real-time detection</topic><topic>Remote Sensing</topic><topic>Science & Technology</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>Technology</topic><topic>Unmanned aerial vehicles</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koay, Hong Vin</creatorcontrib><creatorcontrib>Chuah, Joon Huang</creatorcontrib><creatorcontrib>Chow, Chee-Onn</creatorcontrib><creatorcontrib>Chang, Yang-Lang</creatorcontrib><creatorcontrib>Yong, Keh Kok</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koay, Hong Vin</au><au>Chuah, Joon Huang</au><au>Chow, Chee-Onn</au><au>Chang, Yang-Lang</au><au>Yong, Keh Kok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>YOLO-RTUAV: Towards Real-Time Vehicle Detection through Aerial Images with Low-Cost Edge Devices</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><stitle>REMOTE SENS-BASEL</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>13</volume><issue>21</issue><spage>4196</spage><pages>4196-</pages><artnum>4196</artnum><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Object detection in aerial images has been an active research area thanks to the vast availability of unmanned aerial vehicles (UAVs). Along with the increase of computational power, deep learning algorithms are commonly used for object detection tasks. However, aerial images have large variations, and the object sizes are usually small, rendering lower detection accuracy. Besides, real-time inferencing on low-cost edge devices remains an open-ended question. In this work, we explored the usage of state-of-the-art deep learning object detection on low-cost edge hardware. We propose YOLO-RTUAV, an improved version of YOLOv4-Tiny, as the solution. We benchmarked our proposed models with various state-of-the-art models on the VAID and COWC datasets. Our proposed model can achieve higher mean average precision (mAP) and frames per second (FPS) than other state-of-the-art tiny YOLO models, especially on a low-cost edge device such as the Jetson Nano 2 GB. It was observed that the Jetson Nano 2 GB can achieve up to 12.8 FPS with a model size of only 5.5 MB.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/rs13214196</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-5834-1057</orcidid><orcidid>https://orcid.org/0000-0001-6044-2650</orcidid><orcidid>https://orcid.org/0000-0002-8428-093X</orcidid><orcidid>https://orcid.org/0000-0001-9058-3497</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2021-11, Vol.13 (21), p.4196, Article 4196 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_proquest_journals_2596058435 |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy aerial imaging Algorithms Altitude Computer applications Deep learning Drones Environmental Sciences Environmental Sciences & Ecology Frames per second Geology Geosciences, Multidisciplinary Imaging Science & Photographic Technology Learning algorithms Life Sciences & Biomedicine Low cost Machine learning Neural networks object detection Object recognition Physical Sciences Real time real-time detection Remote Sensing Science & Technology Sensors Support vector machines Technology Unmanned aerial vehicles Vehicles |
title | YOLO-RTUAV: Towards Real-Time Vehicle Detection through Aerial Images with Low-Cost Edge Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=YOLO-RTUAV:%20Towards%20Real-Time%20Vehicle%20Detection%20through%20Aerial%20Images%20with%20Low-Cost%20Edge%20Devices&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Koay,%20Hong%20Vin&rft.date=2021-11-01&rft.volume=13&rft.issue=21&rft.spage=4196&rft.pages=4196-&rft.artnum=4196&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs13214196&rft_dat=%3Cproquest_cross%3E2596058435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596058435&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_fac6d570a1b34a55a1fd799b620df404&rfr_iscdi=true |