Modelling Bathing Water Quality Using Official Monitoring Data

Predictive models of bathing water quality are a useful support to traditional monitoring and provide timely and adequate information for the protection of public health. When developing models, it is critical to select an appropriate model type and appropriate metrics to reduce errors so that the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2021-11, Vol.13 (21), p.3005, Article 3005
Hauptverfasser: Dzal, Daniela, Kosovic, Ivana Nizetic, Masteli, Toni, Ivankovic, Damir, Puljak, Tatjana, Jozic, Slaven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 3005
container_title Water (Basel)
container_volume 13
creator Dzal, Daniela
Kosovic, Ivana Nizetic
Masteli, Toni
Ivankovic, Damir
Puljak, Tatjana
Jozic, Slaven
description Predictive models of bathing water quality are a useful support to traditional monitoring and provide timely and adequate information for the protection of public health. When developing models, it is critical to select an appropriate model type and appropriate metrics to reduce errors so that the predicted outcome is reliable. It is usually necessary to conduct intensive sampling to collect a sufficient amount of data. This paper presents the process of developing a predictive model in Kastela Bay (Adriatic Sea) using only data from regular (official) bathing water quality monitoring collected during five bathing seasons. The predictive modelling process, which included data preprocessing, model training, and model tuning, showed no silver bullet model and selected two model types that met the specified requirements: a neural network (ANN) for Escherichia coli and a random forest (RF) for intestinal enterococci. The different model types are probably the result of the different persistence of two indicator bacteria to the effects of marine environmental factors and consequently the different die-off rates. By combining these two models, the bathing water samples were classified with acceptable performances, an informedness of 71.7%, an F-score of 47.1%, and an overall accuracy of 80.6%.
doi_str_mv 10.3390/w13213005
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2596056995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596056995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-49574f826817dbe7aa7d512130bb367e9372b945fa7dc319c4e7d09b2b5b91f3</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMoOIyz8B8UXIlU82yajaD1CTMMwojLkqSJZqjNmKQM8-9tGRGX3s25HL774ABwiuAlIQJebRHBiEDIDsAEQ05ySik6_NMfg1mMazgUFWXJ4ARcL3xj2tZ179mtTB-jvslkQvbSy9alXfYaR29prdNOttnCdy75MHp3MskTcGRlG83sR6dg9XC_qp7y-fLxubqZ5xoLnHIqGKe2xEWJeKMMl5I3DI2_KkUKbgThWAnK7OBrgoSmhjdQKKyYEsiSKTjbr90E_9WbmOq170M3XKwxEwVkhRBsoM73lA4-xmBsvQnuU4ZdjWA9BlT_BjSw5Z7dGuVt1M502vzyQ0AcCQTFGBVElUsyOd9Vvu_SMHrx_1HyDZJFdmk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596056995</pqid></control><display><type>article</type><title>Modelling Bathing Water Quality Using Official Monitoring Data</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Dzal, Daniela ; Kosovic, Ivana Nizetic ; Masteli, Toni ; Ivankovic, Damir ; Puljak, Tatjana ; Jozic, Slaven</creator><creatorcontrib>Dzal, Daniela ; Kosovic, Ivana Nizetic ; Masteli, Toni ; Ivankovic, Damir ; Puljak, Tatjana ; Jozic, Slaven</creatorcontrib><description>Predictive models of bathing water quality are a useful support to traditional monitoring and provide timely and adequate information for the protection of public health. When developing models, it is critical to select an appropriate model type and appropriate metrics to reduce errors so that the predicted outcome is reliable. It is usually necessary to conduct intensive sampling to collect a sufficient amount of data. This paper presents the process of developing a predictive model in Kastela Bay (Adriatic Sea) using only data from regular (official) bathing water quality monitoring collected during five bathing seasons. The predictive modelling process, which included data preprocessing, model training, and model tuning, showed no silver bullet model and selected two model types that met the specified requirements: a neural network (ANN) for Escherichia coli and a random forest (RF) for intestinal enterococci. The different model types are probably the result of the different persistence of two indicator bacteria to the effects of marine environmental factors and consequently the different die-off rates. By combining these two models, the bathing water samples were classified with acceptable performances, an informedness of 71.7%, an F-score of 47.1%, and an overall accuracy of 80.6%.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w13213005</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Accuracy ; Bacteria ; Bathing ; Beaches ; Classification ; Coasts ; E coli ; Environmental factors ; Environmental Sciences ; Environmental Sciences &amp; Ecology ; Health risk assessment ; Health risks ; Life Sciences &amp; Biomedicine ; Marine environment ; Modelling ; Monitoring ; Neural networks ; Physical Sciences ; Pollution ; Prediction models ; Public health ; Science &amp; Technology ; Seasons ; Water analysis ; Water quality ; Water quality management ; Water Resources ; Water sampling</subject><ispartof>Water (Basel), 2021-11, Vol.13 (21), p.3005, Article 3005</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000719109000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c292t-49574f826817dbe7aa7d512130bb367e9372b945fa7dc319c4e7d09b2b5b91f3</citedby><cites>FETCH-LOGICAL-c292t-49574f826817dbe7aa7d512130bb367e9372b945fa7dc319c4e7d09b2b5b91f3</cites><orcidid>0000-0002-4988-8333 ; 0000-0002-0671-2194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Dzal, Daniela</creatorcontrib><creatorcontrib>Kosovic, Ivana Nizetic</creatorcontrib><creatorcontrib>Masteli, Toni</creatorcontrib><creatorcontrib>Ivankovic, Damir</creatorcontrib><creatorcontrib>Puljak, Tatjana</creatorcontrib><creatorcontrib>Jozic, Slaven</creatorcontrib><title>Modelling Bathing Water Quality Using Official Monitoring Data</title><title>Water (Basel)</title><addtitle>WATER-SUI</addtitle><description>Predictive models of bathing water quality are a useful support to traditional monitoring and provide timely and adequate information for the protection of public health. When developing models, it is critical to select an appropriate model type and appropriate metrics to reduce errors so that the predicted outcome is reliable. It is usually necessary to conduct intensive sampling to collect a sufficient amount of data. This paper presents the process of developing a predictive model in Kastela Bay (Adriatic Sea) using only data from regular (official) bathing water quality monitoring collected during five bathing seasons. The predictive modelling process, which included data preprocessing, model training, and model tuning, showed no silver bullet model and selected two model types that met the specified requirements: a neural network (ANN) for Escherichia coli and a random forest (RF) for intestinal enterococci. The different model types are probably the result of the different persistence of two indicator bacteria to the effects of marine environmental factors and consequently the different die-off rates. By combining these two models, the bathing water samples were classified with acceptable performances, an informedness of 71.7%, an F-score of 47.1%, and an overall accuracy of 80.6%.</description><subject>Accuracy</subject><subject>Bacteria</subject><subject>Bathing</subject><subject>Beaches</subject><subject>Classification</subject><subject>Coasts</subject><subject>E coli</subject><subject>Environmental factors</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Health risk assessment</subject><subject>Health risks</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Marine environment</subject><subject>Modelling</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Physical Sciences</subject><subject>Pollution</subject><subject>Prediction models</subject><subject>Public health</subject><subject>Science &amp; Technology</subject><subject>Seasons</subject><subject>Water analysis</subject><subject>Water quality</subject><subject>Water quality management</subject><subject>Water Resources</subject><subject>Water sampling</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkEtLxDAUhYMoOIyz8B8UXIlU82yajaD1CTMMwojLkqSJZqjNmKQM8-9tGRGX3s25HL774ABwiuAlIQJebRHBiEDIDsAEQ05ySik6_NMfg1mMazgUFWXJ4ARcL3xj2tZ179mtTB-jvslkQvbSy9alXfYaR29prdNOttnCdy75MHp3MskTcGRlG83sR6dg9XC_qp7y-fLxubqZ5xoLnHIqGKe2xEWJeKMMl5I3DI2_KkUKbgThWAnK7OBrgoSmhjdQKKyYEsiSKTjbr90E_9WbmOq170M3XKwxEwVkhRBsoM73lA4-xmBsvQnuU4ZdjWA9BlT_BjSw5Z7dGuVt1M502vzyQ0AcCQTFGBVElUsyOd9Vvu_SMHrx_1HyDZJFdmk</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Dzal, Daniela</creator><creator>Kosovic, Ivana Nizetic</creator><creator>Masteli, Toni</creator><creator>Ivankovic, Damir</creator><creator>Puljak, Tatjana</creator><creator>Jozic, Slaven</creator><general>Mdpi</general><general>MDPI AG</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4988-8333</orcidid><orcidid>https://orcid.org/0000-0002-0671-2194</orcidid></search><sort><creationdate>20211101</creationdate><title>Modelling Bathing Water Quality Using Official Monitoring Data</title><author>Dzal, Daniela ; Kosovic, Ivana Nizetic ; Masteli, Toni ; Ivankovic, Damir ; Puljak, Tatjana ; Jozic, Slaven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-49574f826817dbe7aa7d512130bb367e9372b945fa7dc319c4e7d09b2b5b91f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Bacteria</topic><topic>Bathing</topic><topic>Beaches</topic><topic>Classification</topic><topic>Coasts</topic><topic>E coli</topic><topic>Environmental factors</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Health risk assessment</topic><topic>Health risks</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Marine environment</topic><topic>Modelling</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Physical Sciences</topic><topic>Pollution</topic><topic>Prediction models</topic><topic>Public health</topic><topic>Science &amp; Technology</topic><topic>Seasons</topic><topic>Water analysis</topic><topic>Water quality</topic><topic>Water quality management</topic><topic>Water Resources</topic><topic>Water sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dzal, Daniela</creatorcontrib><creatorcontrib>Kosovic, Ivana Nizetic</creatorcontrib><creatorcontrib>Masteli, Toni</creatorcontrib><creatorcontrib>Ivankovic, Damir</creatorcontrib><creatorcontrib>Puljak, Tatjana</creatorcontrib><creatorcontrib>Jozic, Slaven</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dzal, Daniela</au><au>Kosovic, Ivana Nizetic</au><au>Masteli, Toni</au><au>Ivankovic, Damir</au><au>Puljak, Tatjana</au><au>Jozic, Slaven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling Bathing Water Quality Using Official Monitoring Data</atitle><jtitle>Water (Basel)</jtitle><stitle>WATER-SUI</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>13</volume><issue>21</issue><spage>3005</spage><pages>3005-</pages><artnum>3005</artnum><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Predictive models of bathing water quality are a useful support to traditional monitoring and provide timely and adequate information for the protection of public health. When developing models, it is critical to select an appropriate model type and appropriate metrics to reduce errors so that the predicted outcome is reliable. It is usually necessary to conduct intensive sampling to collect a sufficient amount of data. This paper presents the process of developing a predictive model in Kastela Bay (Adriatic Sea) using only data from regular (official) bathing water quality monitoring collected during five bathing seasons. The predictive modelling process, which included data preprocessing, model training, and model tuning, showed no silver bullet model and selected two model types that met the specified requirements: a neural network (ANN) for Escherichia coli and a random forest (RF) for intestinal enterococci. The different model types are probably the result of the different persistence of two indicator bacteria to the effects of marine environmental factors and consequently the different die-off rates. By combining these two models, the bathing water samples were classified with acceptable performances, an informedness of 71.7%, an F-score of 47.1%, and an overall accuracy of 80.6%.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/w13213005</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4988-8333</orcidid><orcidid>https://orcid.org/0000-0002-0671-2194</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2021-11, Vol.13 (21), p.3005, Article 3005
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_2596056995
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Accuracy
Bacteria
Bathing
Beaches
Classification
Coasts
E coli
Environmental factors
Environmental Sciences
Environmental Sciences & Ecology
Health risk assessment
Health risks
Life Sciences & Biomedicine
Marine environment
Modelling
Monitoring
Neural networks
Physical Sciences
Pollution
Prediction models
Public health
Science & Technology
Seasons
Water analysis
Water quality
Water quality management
Water Resources
Water sampling
title Modelling Bathing Water Quality Using Official Monitoring Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20Bathing%20Water%20Quality%20Using%20Official%20Monitoring%20Data&rft.jtitle=Water%20(Basel)&rft.au=Dzal,%20Daniela&rft.date=2021-11-01&rft.volume=13&rft.issue=21&rft.spage=3005&rft.pages=3005-&rft.artnum=3005&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w13213005&rft_dat=%3Cproquest_webof%3E2596056995%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596056995&rft_id=info:pmid/&rfr_iscdi=true