Neural Network Explainable AI Based on Paraconsistent Analysis: An Extension

This paper explores the use of paraconsistent analysis for assessing neural networks from an explainable AI perspective. This is an early exploration paper aiming to understand whether paraconsistent analysis can be applied for understanding neural networks and whether it is worth further develop th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2021-11, Vol.10 (21), p.2660
Hauptverfasser: Marcondes, Francisco S., Durães, Dalila, Santos, Flávio, Almeida, José João, Novais, Paulo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 2660
container_title Electronics (Basel)
container_volume 10
creator Marcondes, Francisco S.
Durães, Dalila
Santos, Flávio
Almeida, José João
Novais, Paulo
description This paper explores the use of paraconsistent analysis for assessing neural networks from an explainable AI perspective. This is an early exploration paper aiming to understand whether paraconsistent analysis can be applied for understanding neural networks and whether it is worth further develop the subject in future research. The answers to these two questions are affirmative. Paraconsistent analysis provides insightful prediction visualisation through a mature formal framework that provides proper support for reasoning. The significant potential envisioned is the that paraconsistent analysis will be used for guiding neural network development projects, despite the performance issues. This paper provides two explorations. The first was a baseline experiment based on MNIST for establishing the link between paraconsistency and neural networks. The second experiment aimed to detect violence in audio files to verify whether the paraconsistent framework scales to industry level problems. The conclusion shown by this early assessment is that further research on this subject is worthful, and may eventually result in a significant contribution to the field.
doi_str_mv 10.3390/electronics10212660
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596018513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596018513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-86c3a084acc2abdf566b8986f743d6e95efa68605d701df4b6be9e2c27027a2e3</originalsourceid><addsrcrecordid>eNptUMtOwzAQtBBIVKVfwMUS54AfiWNzC1WBSlXhAOdo42yklGAHOxX07zEqBw7sZWZXs6PREHLJ2bWUht3ggHYK3vU2cia4UIqdkJlgpcmMMOL0Dz8nixh3LI3hUks2I5st7gMMdIvTpw9vdPU1DtA7aAak1ZreQcSWekefIYD1LvZxQjfRysFwSMttYukn3WLv3QU562CIuPjFOXm9X70sH7PN08N6WW0yK_NyyrSyEpjOwVoBTdsVSjXaaNWVuWwVmgI7UFqxoi0Zb7u8UQ0aFFaUTJQgUM7J1dF3DP5jj3Gqd34fUqRYi8IoxnXBZVLJo8oGH2PArh5D_w7hUHNW_zRX_9Oc_AYQG2Q7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596018513</pqid></control><display><type>article</type><title>Neural Network Explainable AI Based on Paraconsistent Analysis: An Extension</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Marcondes, Francisco S. ; Durães, Dalila ; Santos, Flávio ; Almeida, José João ; Novais, Paulo</creator><creatorcontrib>Marcondes, Francisco S. ; Durães, Dalila ; Santos, Flávio ; Almeida, José João ; Novais, Paulo</creatorcontrib><description>This paper explores the use of paraconsistent analysis for assessing neural networks from an explainable AI perspective. This is an early exploration paper aiming to understand whether paraconsistent analysis can be applied for understanding neural networks and whether it is worth further develop the subject in future research. The answers to these two questions are affirmative. Paraconsistent analysis provides insightful prediction visualisation through a mature formal framework that provides proper support for reasoning. The significant potential envisioned is the that paraconsistent analysis will be used for guiding neural network development projects, despite the performance issues. This paper provides two explorations. The first was a baseline experiment based on MNIST for establishing the link between paraconsistency and neural networks. The second experiment aimed to detect violence in audio files to verify whether the paraconsistent framework scales to industry level problems. The conclusion shown by this early assessment is that further research on this subject is worthful, and may eventually result in a significant contribution to the field.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10212660</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Annotations ; Artificial intelligence ; Audio data ; Classification ; Datasets ; Deep learning ; Explainable artificial intelligence ; Explosions ; Logic ; Machine learning ; Neural networks</subject><ispartof>Electronics (Basel), 2021-11, Vol.10 (21), p.2660</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-86c3a084acc2abdf566b8986f743d6e95efa68605d701df4b6be9e2c27027a2e3</citedby><cites>FETCH-LOGICAL-c347t-86c3a084acc2abdf566b8986f743d6e95efa68605d701df4b6be9e2c27027a2e3</cites><orcidid>0000-0002-8313-7023 ; 0000-0002-3549-0754 ; 0000-0002-2221-2261 ; 0000-0003-2378-5376 ; 0000-0002-0722-2031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Marcondes, Francisco S.</creatorcontrib><creatorcontrib>Durães, Dalila</creatorcontrib><creatorcontrib>Santos, Flávio</creatorcontrib><creatorcontrib>Almeida, José João</creatorcontrib><creatorcontrib>Novais, Paulo</creatorcontrib><title>Neural Network Explainable AI Based on Paraconsistent Analysis: An Extension</title><title>Electronics (Basel)</title><description>This paper explores the use of paraconsistent analysis for assessing neural networks from an explainable AI perspective. This is an early exploration paper aiming to understand whether paraconsistent analysis can be applied for understanding neural networks and whether it is worth further develop the subject in future research. The answers to these two questions are affirmative. Paraconsistent analysis provides insightful prediction visualisation through a mature formal framework that provides proper support for reasoning. The significant potential envisioned is the that paraconsistent analysis will be used for guiding neural network development projects, despite the performance issues. This paper provides two explorations. The first was a baseline experiment based on MNIST for establishing the link between paraconsistency and neural networks. The second experiment aimed to detect violence in audio files to verify whether the paraconsistent framework scales to industry level problems. The conclusion shown by this early assessment is that further research on this subject is worthful, and may eventually result in a significant contribution to the field.</description><subject>Annotations</subject><subject>Artificial intelligence</subject><subject>Audio data</subject><subject>Classification</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Explainable artificial intelligence</subject><subject>Explosions</subject><subject>Logic</subject><subject>Machine learning</subject><subject>Neural networks</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUMtOwzAQtBBIVKVfwMUS54AfiWNzC1WBSlXhAOdo42yklGAHOxX07zEqBw7sZWZXs6PREHLJ2bWUht3ggHYK3vU2cia4UIqdkJlgpcmMMOL0Dz8nixh3LI3hUks2I5st7gMMdIvTpw9vdPU1DtA7aAak1ZreQcSWekefIYD1LvZxQjfRysFwSMttYukn3WLv3QU562CIuPjFOXm9X70sH7PN08N6WW0yK_NyyrSyEpjOwVoBTdsVSjXaaNWVuWwVmgI7UFqxoi0Zb7u8UQ0aFFaUTJQgUM7J1dF3DP5jj3Gqd34fUqRYi8IoxnXBZVLJo8oGH2PArh5D_w7hUHNW_zRX_9Oc_AYQG2Q7</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Marcondes, Francisco S.</creator><creator>Durães, Dalila</creator><creator>Santos, Flávio</creator><creator>Almeida, José João</creator><creator>Novais, Paulo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8313-7023</orcidid><orcidid>https://orcid.org/0000-0002-3549-0754</orcidid><orcidid>https://orcid.org/0000-0002-2221-2261</orcidid><orcidid>https://orcid.org/0000-0003-2378-5376</orcidid><orcidid>https://orcid.org/0000-0002-0722-2031</orcidid></search><sort><creationdate>20211101</creationdate><title>Neural Network Explainable AI Based on Paraconsistent Analysis: An Extension</title><author>Marcondes, Francisco S. ; Durães, Dalila ; Santos, Flávio ; Almeida, José João ; Novais, Paulo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-86c3a084acc2abdf566b8986f743d6e95efa68605d701df4b6be9e2c27027a2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annotations</topic><topic>Artificial intelligence</topic><topic>Audio data</topic><topic>Classification</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Explainable artificial intelligence</topic><topic>Explosions</topic><topic>Logic</topic><topic>Machine learning</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcondes, Francisco S.</creatorcontrib><creatorcontrib>Durães, Dalila</creatorcontrib><creatorcontrib>Santos, Flávio</creatorcontrib><creatorcontrib>Almeida, José João</creatorcontrib><creatorcontrib>Novais, Paulo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcondes, Francisco S.</au><au>Durães, Dalila</au><au>Santos, Flávio</au><au>Almeida, José João</au><au>Novais, Paulo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network Explainable AI Based on Paraconsistent Analysis: An Extension</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>10</volume><issue>21</issue><spage>2660</spage><pages>2660-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This paper explores the use of paraconsistent analysis for assessing neural networks from an explainable AI perspective. This is an early exploration paper aiming to understand whether paraconsistent analysis can be applied for understanding neural networks and whether it is worth further develop the subject in future research. The answers to these two questions are affirmative. Paraconsistent analysis provides insightful prediction visualisation through a mature formal framework that provides proper support for reasoning. The significant potential envisioned is the that paraconsistent analysis will be used for guiding neural network development projects, despite the performance issues. This paper provides two explorations. The first was a baseline experiment based on MNIST for establishing the link between paraconsistency and neural networks. The second experiment aimed to detect violence in audio files to verify whether the paraconsistent framework scales to industry level problems. The conclusion shown by this early assessment is that further research on this subject is worthful, and may eventually result in a significant contribution to the field.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10212660</doi><orcidid>https://orcid.org/0000-0002-8313-7023</orcidid><orcidid>https://orcid.org/0000-0002-3549-0754</orcidid><orcidid>https://orcid.org/0000-0002-2221-2261</orcidid><orcidid>https://orcid.org/0000-0003-2378-5376</orcidid><orcidid>https://orcid.org/0000-0002-0722-2031</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2021-11, Vol.10 (21), p.2660
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2596018513
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Annotations
Artificial intelligence
Audio data
Classification
Datasets
Deep learning
Explainable artificial intelligence
Explosions
Logic
Machine learning
Neural networks
title Neural Network Explainable AI Based on Paraconsistent Analysis: An Extension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T22%3A44%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network%20Explainable%20AI%20Based%20on%20Paraconsistent%20Analysis:%20An%20Extension&rft.jtitle=Electronics%20(Basel)&rft.au=Marcondes,%20Francisco%20S.&rft.date=2021-11-01&rft.volume=10&rft.issue=21&rft.spage=2660&rft.pages=2660-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10212660&rft_dat=%3Cproquest_cross%3E2596018513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596018513&rft_id=info:pmid/&rfr_iscdi=true