Prototype superfluid gravitational wave detector
We study a cross-shaped cavity filled with superfluid 4He as a prototype resonant-mass gravitational wave detector. Using a membrane and a reentrant microwave cavity as a sensitive optomechanical transducer, we were able to observe the thermally excited high-Q acoustic modes of the helium at 20 mK t...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2021-10, Vol.104 (8), p.1, Article 082001 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 104 |
creator | Vadakkumbatt, V. Hirschel, M. Manley, J. Clark, T. J. Singh, S. Davis, J. P. |
description | We study a cross-shaped cavity filled with superfluid 4He as a prototype resonant-mass gravitational wave detector. Using a membrane and a reentrant microwave cavity as a sensitive optomechanical transducer, we were able to observe the thermally excited high-Q acoustic modes of the helium at 20 mK temperature and achieved a strain sensitivity of 8 × 10−19 Hz −1/2 to gravitational waves. To facilitate the broadband detection of continuous gravitational waves, we tune the kilohertz-scale mechanical resonance frequencies up to 173 Hz / bar by pressurizing the helium. With reasonable improvements, this architecture will enable the search for gravitational waves in the 1 – 30 kHz range, relevant for a number of astrophysical sources both within and beyond the Standard Model. |
doi_str_mv | 10.1103/PhysRevD.104.082001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2595661073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595661073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-57f17ef221e2ebcb75a659230efdd66de37a0d3c4e03a6abc7c7dd615b98ee13</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxYMouKz7CbwUPHedSdpke5T1Lyy4yN5Dmk61SzU1SSv99laqnuYx7_F4_Bi7RFgjgrjev43hhYbbNUK2hg0HwBO24JmCFIAXp_8a4ZytQjjCJCUUCnHBYO9ddHHsKAl9R75u-6ZKXr0Zmmhi4z5Mm3yZgZKKItno_AU7q00baPV7l-xwf3fYPqa754en7c0utULxmOaqRkU150icSluq3Mi84AKoriopKxLKQCVsRiCMNKVVVk0G5mWxIUKxZFdzbefdZ08h6qPr_bQmaJ4XuZQISkwpMaesdyF4qnXnm3fjR42gf-DoPzjTI9MzHPENx3NZ2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595661073</pqid></control><display><type>article</type><title>Prototype superfluid gravitational wave detector</title><source>American Physical Society Journals</source><creator>Vadakkumbatt, V. ; Hirschel, M. ; Manley, J. ; Clark, T. J. ; Singh, S. ; Davis, J. P.</creator><creatorcontrib>Vadakkumbatt, V. ; Hirschel, M. ; Manley, J. ; Clark, T. J. ; Singh, S. ; Davis, J. P.</creatorcontrib><description>We study a cross-shaped cavity filled with superfluid 4He as a prototype resonant-mass gravitational wave detector. Using a membrane and a reentrant microwave cavity as a sensitive optomechanical transducer, we were able to observe the thermally excited high-Q acoustic modes of the helium at 20 mK temperature and achieved a strain sensitivity of 8 × 10−19 Hz −1/2 to gravitational waves. To facilitate the broadband detection of continuous gravitational waves, we tune the kilohertz-scale mechanical resonance frequencies up to 173 Hz / bar by pressurizing the helium. With reasonable improvements, this architecture will enable the search for gravitational waves in the 1 – 30 kHz range, relevant for a number of astrophysical sources both within and beyond the Standard Model.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.104.082001</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Broadband ; Fluids ; Gravitational waves ; Helium ; Prototypes ; Superfluidity</subject><ispartof>Physical review. D, 2021-10, Vol.104 (8), p.1, Article 082001</ispartof><rights>Copyright American Physical Society Oct 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-57f17ef221e2ebcb75a659230efdd66de37a0d3c4e03a6abc7c7dd615b98ee13</citedby><cites>FETCH-LOGICAL-c372t-57f17ef221e2ebcb75a659230efdd66de37a0d3c4e03a6abc7c7dd615b98ee13</cites><orcidid>0000-0002-3798-0976 ; 0000-0003-1257-2308 ; 0000-0002-3778-3948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Vadakkumbatt, V.</creatorcontrib><creatorcontrib>Hirschel, M.</creatorcontrib><creatorcontrib>Manley, J.</creatorcontrib><creatorcontrib>Clark, T. J.</creatorcontrib><creatorcontrib>Singh, S.</creatorcontrib><creatorcontrib>Davis, J. P.</creatorcontrib><title>Prototype superfluid gravitational wave detector</title><title>Physical review. D</title><description>We study a cross-shaped cavity filled with superfluid 4He as a prototype resonant-mass gravitational wave detector. Using a membrane and a reentrant microwave cavity as a sensitive optomechanical transducer, we were able to observe the thermally excited high-Q acoustic modes of the helium at 20 mK temperature and achieved a strain sensitivity of 8 × 10−19 Hz −1/2 to gravitational waves. To facilitate the broadband detection of continuous gravitational waves, we tune the kilohertz-scale mechanical resonance frequencies up to 173 Hz / bar by pressurizing the helium. With reasonable improvements, this architecture will enable the search for gravitational waves in the 1 – 30 kHz range, relevant for a number of astrophysical sources both within and beyond the Standard Model.</description><subject>Broadband</subject><subject>Fluids</subject><subject>Gravitational waves</subject><subject>Helium</subject><subject>Prototypes</subject><subject>Superfluidity</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LxDAQxYMouKz7CbwUPHedSdpke5T1Lyy4yN5Dmk61SzU1SSv99laqnuYx7_F4_Bi7RFgjgrjev43hhYbbNUK2hg0HwBO24JmCFIAXp_8a4ZytQjjCJCUUCnHBYO9ddHHsKAl9R75u-6ZKXr0Zmmhi4z5Mm3yZgZKKItno_AU7q00baPV7l-xwf3fYPqa754en7c0utULxmOaqRkU150icSluq3Mi84AKoriopKxLKQCVsRiCMNKVVVk0G5mWxIUKxZFdzbefdZ08h6qPr_bQmaJ4XuZQISkwpMaesdyF4qnXnm3fjR42gf-DoPzjTI9MzHPENx3NZ2w</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Vadakkumbatt, V.</creator><creator>Hirschel, M.</creator><creator>Manley, J.</creator><creator>Clark, T. J.</creator><creator>Singh, S.</creator><creator>Davis, J. P.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3798-0976</orcidid><orcidid>https://orcid.org/0000-0003-1257-2308</orcidid><orcidid>https://orcid.org/0000-0002-3778-3948</orcidid></search><sort><creationdate>20211015</creationdate><title>Prototype superfluid gravitational wave detector</title><author>Vadakkumbatt, V. ; Hirschel, M. ; Manley, J. ; Clark, T. J. ; Singh, S. ; Davis, J. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-57f17ef221e2ebcb75a659230efdd66de37a0d3c4e03a6abc7c7dd615b98ee13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Broadband</topic><topic>Fluids</topic><topic>Gravitational waves</topic><topic>Helium</topic><topic>Prototypes</topic><topic>Superfluidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vadakkumbatt, V.</creatorcontrib><creatorcontrib>Hirschel, M.</creatorcontrib><creatorcontrib>Manley, J.</creatorcontrib><creatorcontrib>Clark, T. J.</creatorcontrib><creatorcontrib>Singh, S.</creatorcontrib><creatorcontrib>Davis, J. P.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vadakkumbatt, V.</au><au>Hirschel, M.</au><au>Manley, J.</au><au>Clark, T. J.</au><au>Singh, S.</au><au>Davis, J. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prototype superfluid gravitational wave detector</atitle><jtitle>Physical review. D</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>104</volume><issue>8</issue><spage>1</spage><pages>1-</pages><artnum>082001</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We study a cross-shaped cavity filled with superfluid 4He as a prototype resonant-mass gravitational wave detector. Using a membrane and a reentrant microwave cavity as a sensitive optomechanical transducer, we were able to observe the thermally excited high-Q acoustic modes of the helium at 20 mK temperature and achieved a strain sensitivity of 8 × 10−19 Hz −1/2 to gravitational waves. To facilitate the broadband detection of continuous gravitational waves, we tune the kilohertz-scale mechanical resonance frequencies up to 173 Hz / bar by pressurizing the helium. With reasonable improvements, this architecture will enable the search for gravitational waves in the 1 – 30 kHz range, relevant for a number of astrophysical sources both within and beyond the Standard Model.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.104.082001</doi><orcidid>https://orcid.org/0000-0002-3798-0976</orcidid><orcidid>https://orcid.org/0000-0003-1257-2308</orcidid><orcidid>https://orcid.org/0000-0002-3778-3948</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2021-10, Vol.104 (8), p.1, Article 082001 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2595661073 |
source | American Physical Society Journals |
subjects | Broadband Fluids Gravitational waves Helium Prototypes Superfluidity |
title | Prototype superfluid gravitational wave detector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T07%3A24%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prototype%20superfluid%20gravitational%20wave%20detector&rft.jtitle=Physical%20review.%20D&rft.au=Vadakkumbatt,%20V.&rft.date=2021-10-15&rft.volume=104&rft.issue=8&rft.spage=1&rft.pages=1-&rft.artnum=082001&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.104.082001&rft_dat=%3Cproquest_cross%3E2595661073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595661073&rft_id=info:pmid/&rfr_iscdi=true |