Frequency shift of light emitted from growing and shrinking black holes

In this paper we present a method to study the frequency shift of signals sent from near a Schwarzschild black hole that grows or shrinks through accretion. We construct the numerical solution of Einstein's equations sourced by a spherical shell of scalar field, with positive energy density to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2021-10, Vol.104 (8), p.1, Article 084014
Hauptverfasser: Guzmán, F. G., Alvarez-Ríos, I., González, J. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1
container_title Physical review. D
container_volume 104
creator Guzmán, F. G.
Alvarez-Ríos, I.
González, J. A.
description In this paper we present a method to study the frequency shift of signals sent from near a Schwarzschild black hole that grows or shrinks through accretion. We construct the numerical solution of Einstein's equations sourced by a spherical shell of scalar field, with positive energy density to simulate the growth and with negative energy density to simulate the shrink of the black hole horizon. We launch a distribution of null rays at various time slices during the accretion and estimate their energy along their own trajectories. Spatially the bundles of photons are distributed according to the distribution of dust, whose dynamics obeys Euler equations in the test field limit during the evolution of the black hole. With these elements, we construct the frequency shift of photons during the accretion process of growth or contraction of the hole, which shows a variability that depends on the thickness of the scalar field shell or equivalently the timescale of the accretion.
doi_str_mv 10.1103/PhysRevD.104.084014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2595659102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595659102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-126c6833519c0feef1da1ccdcecdc37cafd17047c82fbcac11c3d72c70f7cd783</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOOb-Al8CPnfeJW3TPsp0KgwU0eeQXZO1W9fOpFP235sx9eG4744f9x0fY9cIU0SQt6_1IbzZr_spQjqFIgVMz9hIpAoSAFGe_2uESzYJYQ1R5lAqxBF7nHv7ubcdHXioGzfw3vG2WdUDt9tmGGzFne-3fOX776ZbcdNVkfNNtzlOy9bQhtd9a8MVu3CmDXby28fsY_7wPntKFi-Pz7O7RUJCqCFBkVNeSJlhSeCsdVgZJKrIxpKKjKtQQaqoEG5JhhBJVkqQAqeoUoUcs5vT3Z3v499h0Ot-77toqUVWZnlWIohIyRNFvg_BW6d3vtkaf9AI-hia_gstLlJ9Ck3-AHHaYk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595659102</pqid></control><display><type>article</type><title>Frequency shift of light emitted from growing and shrinking black holes</title><source>American Physical Society Journals</source><creator>Guzmán, F. G. ; Alvarez-Ríos, I. ; González, J. A.</creator><creatorcontrib>Guzmán, F. G. ; Alvarez-Ríos, I. ; González, J. A.</creatorcontrib><description>In this paper we present a method to study the frequency shift of signals sent from near a Schwarzschild black hole that grows or shrinks through accretion. We construct the numerical solution of Einstein's equations sourced by a spherical shell of scalar field, with positive energy density to simulate the growth and with negative energy density to simulate the shrink of the black hole horizon. We launch a distribution of null rays at various time slices during the accretion and estimate their energy along their own trajectories. Spatially the bundles of photons are distributed according to the distribution of dust, whose dynamics obeys Euler equations in the test field limit during the evolution of the black hole. With these elements, we construct the frequency shift of photons during the accretion process of growth or contraction of the hole, which shows a variability that depends on the thickness of the scalar field shell or equivalently the timescale of the accretion.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.104.084014</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Black holes ; Deposition ; Einstein equations ; Euler-Lagrange equation ; Flux density ; Frequency shift ; Mathematical analysis ; Photons ; Scalars ; Spherical shells</subject><ispartof>Physical review. D, 2021-10, Vol.104 (8), p.1, Article 084014</ispartof><rights>Copyright American Physical Society Oct 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c227t-126c6833519c0feef1da1ccdcecdc37cafd17047c82fbcac11c3d72c70f7cd783</cites><orcidid>0000-0002-1350-3673 ; 0000-0002-2753-696X ; 0000-0003-4266-3374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2875,2876,27923,27924</link.rule.ids></links><search><creatorcontrib>Guzmán, F. G.</creatorcontrib><creatorcontrib>Alvarez-Ríos, I.</creatorcontrib><creatorcontrib>González, J. A.</creatorcontrib><title>Frequency shift of light emitted from growing and shrinking black holes</title><title>Physical review. D</title><description>In this paper we present a method to study the frequency shift of signals sent from near a Schwarzschild black hole that grows or shrinks through accretion. We construct the numerical solution of Einstein's equations sourced by a spherical shell of scalar field, with positive energy density to simulate the growth and with negative energy density to simulate the shrink of the black hole horizon. We launch a distribution of null rays at various time slices during the accretion and estimate their energy along their own trajectories. Spatially the bundles of photons are distributed according to the distribution of dust, whose dynamics obeys Euler equations in the test field limit during the evolution of the black hole. With these elements, we construct the frequency shift of photons during the accretion process of growth or contraction of the hole, which shows a variability that depends on the thickness of the scalar field shell or equivalently the timescale of the accretion.</description><subject>Black holes</subject><subject>Deposition</subject><subject>Einstein equations</subject><subject>Euler-Lagrange equation</subject><subject>Flux density</subject><subject>Frequency shift</subject><subject>Mathematical analysis</subject><subject>Photons</subject><subject>Scalars</subject><subject>Spherical shells</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQxoMoOOb-Al8CPnfeJW3TPsp0KgwU0eeQXZO1W9fOpFP235sx9eG4744f9x0fY9cIU0SQt6_1IbzZr_spQjqFIgVMz9hIpAoSAFGe_2uESzYJYQ1R5lAqxBF7nHv7ubcdHXioGzfw3vG2WdUDt9tmGGzFne-3fOX776ZbcdNVkfNNtzlOy9bQhtd9a8MVu3CmDXby28fsY_7wPntKFi-Pz7O7RUJCqCFBkVNeSJlhSeCsdVgZJKrIxpKKjKtQQaqoEG5JhhBJVkqQAqeoUoUcs5vT3Z3v499h0Ot-77toqUVWZnlWIohIyRNFvg_BW6d3vtkaf9AI-hia_gstLlJ9Ck3-AHHaYk0</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Guzmán, F. G.</creator><creator>Alvarez-Ríos, I.</creator><creator>González, J. A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1350-3673</orcidid><orcidid>https://orcid.org/0000-0002-2753-696X</orcidid><orcidid>https://orcid.org/0000-0003-4266-3374</orcidid></search><sort><creationdate>20211015</creationdate><title>Frequency shift of light emitted from growing and shrinking black holes</title><author>Guzmán, F. G. ; Alvarez-Ríos, I. ; González, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-126c6833519c0feef1da1ccdcecdc37cafd17047c82fbcac11c3d72c70f7cd783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Black holes</topic><topic>Deposition</topic><topic>Einstein equations</topic><topic>Euler-Lagrange equation</topic><topic>Flux density</topic><topic>Frequency shift</topic><topic>Mathematical analysis</topic><topic>Photons</topic><topic>Scalars</topic><topic>Spherical shells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guzmán, F. G.</creatorcontrib><creatorcontrib>Alvarez-Ríos, I.</creatorcontrib><creatorcontrib>González, J. A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guzmán, F. G.</au><au>Alvarez-Ríos, I.</au><au>González, J. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency shift of light emitted from growing and shrinking black holes</atitle><jtitle>Physical review. D</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>104</volume><issue>8</issue><spage>1</spage><pages>1-</pages><artnum>084014</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>In this paper we present a method to study the frequency shift of signals sent from near a Schwarzschild black hole that grows or shrinks through accretion. We construct the numerical solution of Einstein's equations sourced by a spherical shell of scalar field, with positive energy density to simulate the growth and with negative energy density to simulate the shrink of the black hole horizon. We launch a distribution of null rays at various time slices during the accretion and estimate their energy along their own trajectories. Spatially the bundles of photons are distributed according to the distribution of dust, whose dynamics obeys Euler equations in the test field limit during the evolution of the black hole. With these elements, we construct the frequency shift of photons during the accretion process of growth or contraction of the hole, which shows a variability that depends on the thickness of the scalar field shell or equivalently the timescale of the accretion.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.104.084014</doi><orcidid>https://orcid.org/0000-0002-1350-3673</orcidid><orcidid>https://orcid.org/0000-0002-2753-696X</orcidid><orcidid>https://orcid.org/0000-0003-4266-3374</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2021-10, Vol.104 (8), p.1, Article 084014
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2595659102
source American Physical Society Journals
subjects Black holes
Deposition
Einstein equations
Euler-Lagrange equation
Flux density
Frequency shift
Mathematical analysis
Photons
Scalars
Spherical shells
title Frequency shift of light emitted from growing and shrinking black holes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20shift%20of%20light%20emitted%20from%20growing%20and%20shrinking%20black%20holes&rft.jtitle=Physical%20review.%20D&rft.au=Guzm%C3%A1n,%20F.%E2%80%89G.&rft.date=2021-10-15&rft.volume=104&rft.issue=8&rft.spage=1&rft.pages=1-&rft.artnum=084014&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.104.084014&rft_dat=%3Cproquest_cross%3E2595659102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595659102&rft_id=info:pmid/&rfr_iscdi=true