Effects of radius ratio on annular centrifugal Rayleigh–Bénard convection
We report on a three-dimensional direct numerical simulation study of flow structure and heat transport in the annular centrifugal Rayleigh–Bénard convection (ACRBC) system, with cold inner and hot outer cylinders corotating axially, for the Rayleigh number range $Ra \in [{10^6},{10^8}]$ and radius...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2022-01, Vol.930, Article A19 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 930 |
creator | Wang, Dongpu Jiang, Hechuan Liu, Shuang Zhu, Xiaojue Sun, Chao |
description | We report on a three-dimensional direct numerical simulation study of flow structure and heat transport in the annular centrifugal Rayleigh–Bénard convection (ACRBC) system, with cold inner and hot outer cylinders corotating axially, for the Rayleigh number range $Ra \in [{10^6},{10^8}]$ and radius ratio range $\eta = {R_i}/{R_o} \in [0.3,0.9]$ ($R_i$ and $R_o$ are the radius of the inner and outer cylinders, respectively). This study focuses on the dependence of flow dynamics, heat transport and asymmetric mean temperature fields on the radius ratio $\eta$. For the inverse Rossby number $Ro^{-1} = 1$, as the Coriolis force balances inertial force, the flow is in the inertial regime. The mechanisms of zonal flow revolving in the prograde direction in this regime are attributed to the asymmetric movements of plumes and the different curvatures of the cylinders. The number of roll pairs is smaller than the circular roll hypothesis as the convection rolls are probably elongated by zonal flow. The physical mechanism of zonal flow is verified by the dependence of the drift frequency of the large-scale circulation (LSC) rolls and the space- and time-averaged azimuthal velocity on $\eta$. The larger $\eta$ is, the weaker the zonal flow becomes. We show that the heat transport efficiency increases with $\eta$. It is also found that the bulk temperature deviates from the arithmetic mean temperature and the deviation increases as $\eta$ decreases. This effect can be explained by a simple model that accounts for the curvature effects and the radially dependent centrifugal force in ACRBC. |
doi_str_mv | 10.1017/jfm.2021.889 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2595538864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2021_889</cupid><sourcerecordid>2595538864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-32b6197bbd625ea9c7d3adfe719d4ec906383a87f6995ec252347ebd6a176f753</originalsourceid><addsrcrecordid>eNptkE1KxDAYhoMoOI7uPEDBra35aZJmqcP4AwOC6DqkaVI7dJIxaYXZeQdP4Tm8iScxwwy4cfVunu_54AHgHMECQcSvlnZVYIhRUVXiAExQyUTOWUkPwQRCjHOEMDwGJzEuIUQECj4Bi7m1Rg8x8zYLqunGmGbofOZdppwbexUybdwQOju2qs-e1KY3Xfv68_F58_3lVGgy7d17UnTenYIjq_pozvY7BS-38-fZfb54vHuYXS9yTSAecoJrhgSv64ZhapTQvCGqsYYj0ZRGC8hIRVTFLROCGo0pJiU3iVaIM8spmYKLnXcd_Nto4iCXfgwuvZSYCkpJVbEyUZc7SgcfYzBWrkO3UmEjEZTbXjL1ktteMvVKeLHH1aoOXdOaP-u_B78O6W7V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595538864</pqid></control><display><type>article</type><title>Effects of radius ratio on annular centrifugal Rayleigh–Bénard convection</title><source>Cambridge University Press Journals Complete</source><creator>Wang, Dongpu ; Jiang, Hechuan ; Liu, Shuang ; Zhu, Xiaojue ; Sun, Chao</creator><creatorcontrib>Wang, Dongpu ; Jiang, Hechuan ; Liu, Shuang ; Zhu, Xiaojue ; Sun, Chao</creatorcontrib><description>We report on a three-dimensional direct numerical simulation study of flow structure and heat transport in the annular centrifugal Rayleigh–Bénard convection (ACRBC) system, with cold inner and hot outer cylinders corotating axially, for the Rayleigh number range $Ra \in [{10^6},{10^8}]$ and radius ratio range $\eta = {R_i}/{R_o} \in [0.3,0.9]$ ($R_i$ and $R_o$ are the radius of the inner and outer cylinders, respectively). This study focuses on the dependence of flow dynamics, heat transport and asymmetric mean temperature fields on the radius ratio $\eta$. For the inverse Rossby number $Ro^{-1} = 1$, as the Coriolis force balances inertial force, the flow is in the inertial regime. The mechanisms of zonal flow revolving in the prograde direction in this regime are attributed to the asymmetric movements of plumes and the different curvatures of the cylinders. The number of roll pairs is smaller than the circular roll hypothesis as the convection rolls are probably elongated by zonal flow. The physical mechanism of zonal flow is verified by the dependence of the drift frequency of the large-scale circulation (LSC) rolls and the space- and time-averaged azimuthal velocity on $\eta$. The larger $\eta$ is, the weaker the zonal flow becomes. We show that the heat transport efficiency increases with $\eta$. It is also found that the bulk temperature deviates from the arithmetic mean temperature and the deviation increases as $\eta$ decreases. This effect can be explained by a simple model that accounts for the curvature effects and the radially dependent centrifugal force in ACRBC.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2021.889</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Asymmetry ; Centrifugal force ; Cold ; Convection ; Coriolis force ; Cylinders ; Direct numerical simulation ; Efficiency ; Flow ; Flow structures ; Heat ; Heat transfer ; Heat transport ; Inertia ; JFM Papers ; Mathematical models ; Plumes ; Rayleigh number ; Rayleigh-Benard convection ; Reynolds number ; Rolls ; Rossby number ; Temperature fields ; Velocity ; Zonal flow (meteorology)</subject><ispartof>Journal of fluid mechanics, 2022-01, Vol.930, Article A19</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-32b6197bbd625ea9c7d3adfe719d4ec906383a87f6995ec252347ebd6a176f753</citedby><cites>FETCH-LOGICAL-c302t-32b6197bbd625ea9c7d3adfe719d4ec906383a87f6995ec252347ebd6a176f753</cites><orcidid>0000-0003-3069-0586 ; 0000-0002-7878-0655 ; 0000-0002-1476-4082 ; 0000-0002-1421-2210 ; 0000-0002-0930-6343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112021008892/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27922,27923,55626</link.rule.ids></links><search><creatorcontrib>Wang, Dongpu</creatorcontrib><creatorcontrib>Jiang, Hechuan</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Zhu, Xiaojue</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><title>Effects of radius ratio on annular centrifugal Rayleigh–Bénard convection</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We report on a three-dimensional direct numerical simulation study of flow structure and heat transport in the annular centrifugal Rayleigh–Bénard convection (ACRBC) system, with cold inner and hot outer cylinders corotating axially, for the Rayleigh number range $Ra \in [{10^6},{10^8}]$ and radius ratio range $\eta = {R_i}/{R_o} \in [0.3,0.9]$ ($R_i$ and $R_o$ are the radius of the inner and outer cylinders, respectively). This study focuses on the dependence of flow dynamics, heat transport and asymmetric mean temperature fields on the radius ratio $\eta$. For the inverse Rossby number $Ro^{-1} = 1$, as the Coriolis force balances inertial force, the flow is in the inertial regime. The mechanisms of zonal flow revolving in the prograde direction in this regime are attributed to the asymmetric movements of plumes and the different curvatures of the cylinders. The number of roll pairs is smaller than the circular roll hypothesis as the convection rolls are probably elongated by zonal flow. The physical mechanism of zonal flow is verified by the dependence of the drift frequency of the large-scale circulation (LSC) rolls and the space- and time-averaged azimuthal velocity on $\eta$. The larger $\eta$ is, the weaker the zonal flow becomes. We show that the heat transport efficiency increases with $\eta$. It is also found that the bulk temperature deviates from the arithmetic mean temperature and the deviation increases as $\eta$ decreases. This effect can be explained by a simple model that accounts for the curvature effects and the radially dependent centrifugal force in ACRBC.</description><subject>Approximation</subject><subject>Asymmetry</subject><subject>Centrifugal force</subject><subject>Cold</subject><subject>Convection</subject><subject>Coriolis force</subject><subject>Cylinders</subject><subject>Direct numerical simulation</subject><subject>Efficiency</subject><subject>Flow</subject><subject>Flow structures</subject><subject>Heat</subject><subject>Heat transfer</subject><subject>Heat transport</subject><subject>Inertia</subject><subject>JFM Papers</subject><subject>Mathematical models</subject><subject>Plumes</subject><subject>Rayleigh number</subject><subject>Rayleigh-Benard convection</subject><subject>Reynolds number</subject><subject>Rolls</subject><subject>Rossby number</subject><subject>Temperature fields</subject><subject>Velocity</subject><subject>Zonal flow (meteorology)</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1KxDAYhoMoOI7uPEDBra35aZJmqcP4AwOC6DqkaVI7dJIxaYXZeQdP4Tm8iScxwwy4cfVunu_54AHgHMECQcSvlnZVYIhRUVXiAExQyUTOWUkPwQRCjHOEMDwGJzEuIUQECj4Bi7m1Rg8x8zYLqunGmGbofOZdppwbexUybdwQOju2qs-e1KY3Xfv68_F58_3lVGgy7d17UnTenYIjq_pozvY7BS-38-fZfb54vHuYXS9yTSAecoJrhgSv64ZhapTQvCGqsYYj0ZRGC8hIRVTFLROCGo0pJiU3iVaIM8spmYKLnXcd_Nto4iCXfgwuvZSYCkpJVbEyUZc7SgcfYzBWrkO3UmEjEZTbXjL1ktteMvVKeLHH1aoOXdOaP-u_B78O6W7V</recordid><startdate>20220110</startdate><enddate>20220110</enddate><creator>Wang, Dongpu</creator><creator>Jiang, Hechuan</creator><creator>Liu, Shuang</creator><creator>Zhu, Xiaojue</creator><creator>Sun, Chao</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3069-0586</orcidid><orcidid>https://orcid.org/0000-0002-7878-0655</orcidid><orcidid>https://orcid.org/0000-0002-1476-4082</orcidid><orcidid>https://orcid.org/0000-0002-1421-2210</orcidid><orcidid>https://orcid.org/0000-0002-0930-6343</orcidid></search><sort><creationdate>20220110</creationdate><title>Effects of radius ratio on annular centrifugal Rayleigh–Bénard convection</title><author>Wang, Dongpu ; Jiang, Hechuan ; Liu, Shuang ; Zhu, Xiaojue ; Sun, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-32b6197bbd625ea9c7d3adfe719d4ec906383a87f6995ec252347ebd6a176f753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Asymmetry</topic><topic>Centrifugal force</topic><topic>Cold</topic><topic>Convection</topic><topic>Coriolis force</topic><topic>Cylinders</topic><topic>Direct numerical simulation</topic><topic>Efficiency</topic><topic>Flow</topic><topic>Flow structures</topic><topic>Heat</topic><topic>Heat transfer</topic><topic>Heat transport</topic><topic>Inertia</topic><topic>JFM Papers</topic><topic>Mathematical models</topic><topic>Plumes</topic><topic>Rayleigh number</topic><topic>Rayleigh-Benard convection</topic><topic>Reynolds number</topic><topic>Rolls</topic><topic>Rossby number</topic><topic>Temperature fields</topic><topic>Velocity</topic><topic>Zonal flow (meteorology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dongpu</creatorcontrib><creatorcontrib>Jiang, Hechuan</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Zhu, Xiaojue</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dongpu</au><au>Jiang, Hechuan</au><au>Liu, Shuang</au><au>Zhu, Xiaojue</au><au>Sun, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of radius ratio on annular centrifugal Rayleigh–Bénard convection</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2022-01-10</date><risdate>2022</risdate><volume>930</volume><artnum>A19</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We report on a three-dimensional direct numerical simulation study of flow structure and heat transport in the annular centrifugal Rayleigh–Bénard convection (ACRBC) system, with cold inner and hot outer cylinders corotating axially, for the Rayleigh number range $Ra \in [{10^6},{10^8}]$ and radius ratio range $\eta = {R_i}/{R_o} \in [0.3,0.9]$ ($R_i$ and $R_o$ are the radius of the inner and outer cylinders, respectively). This study focuses on the dependence of flow dynamics, heat transport and asymmetric mean temperature fields on the radius ratio $\eta$. For the inverse Rossby number $Ro^{-1} = 1$, as the Coriolis force balances inertial force, the flow is in the inertial regime. The mechanisms of zonal flow revolving in the prograde direction in this regime are attributed to the asymmetric movements of plumes and the different curvatures of the cylinders. The number of roll pairs is smaller than the circular roll hypothesis as the convection rolls are probably elongated by zonal flow. The physical mechanism of zonal flow is verified by the dependence of the drift frequency of the large-scale circulation (LSC) rolls and the space- and time-averaged azimuthal velocity on $\eta$. The larger $\eta$ is, the weaker the zonal flow becomes. We show that the heat transport efficiency increases with $\eta$. It is also found that the bulk temperature deviates from the arithmetic mean temperature and the deviation increases as $\eta$ decreases. This effect can be explained by a simple model that accounts for the curvature effects and the radially dependent centrifugal force in ACRBC.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2021.889</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3069-0586</orcidid><orcidid>https://orcid.org/0000-0002-7878-0655</orcidid><orcidid>https://orcid.org/0000-0002-1476-4082</orcidid><orcidid>https://orcid.org/0000-0002-1421-2210</orcidid><orcidid>https://orcid.org/0000-0002-0930-6343</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2022-01, Vol.930, Article A19 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2595538864 |
source | Cambridge University Press Journals Complete |
subjects | Approximation Asymmetry Centrifugal force Cold Convection Coriolis force Cylinders Direct numerical simulation Efficiency Flow Flow structures Heat Heat transfer Heat transport Inertia JFM Papers Mathematical models Plumes Rayleigh number Rayleigh-Benard convection Reynolds number Rolls Rossby number Temperature fields Velocity Zonal flow (meteorology) |
title | Effects of radius ratio on annular centrifugal Rayleigh–Bénard convection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20radius%20ratio%20on%20annular%20centrifugal%20Rayleigh%E2%80%93B%C3%A9nard%20convection&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Wang,%20Dongpu&rft.date=2022-01-10&rft.volume=930&rft.artnum=A19&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2021.889&rft_dat=%3Cproquest_cross%3E2595538864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595538864&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2021_889&rfr_iscdi=true |