Approximate Solutions of Combinatorial Problems via Quantum Relaxations

Combinatorial problems are formulated to find optimal designs within a fixed set of constraints. They are commonly found across diverse engineering and scientific domains. Understanding how to best use quantum computers for combinatorial optimization is to date an open problem. Here we propose new m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-11
Hauptverfasser: Fuller, Bryce, Hadfield, Charles, Glick, Jennifer R, Imamichi, Takashi, Itoko, Toshinari, Thompson, Richard J, Jiao, Yang, Kagele, Marna M, Blom-Schieber, Adriana W, Rudy, Raymond, Mezzacapo, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fuller, Bryce
Hadfield, Charles
Glick, Jennifer R
Imamichi, Takashi
Itoko, Toshinari
Thompson, Richard J
Jiao, Yang
Kagele, Marna M
Blom-Schieber, Adriana W
Rudy, Raymond
Mezzacapo, Antonio
description Combinatorial problems are formulated to find optimal designs within a fixed set of constraints. They are commonly found across diverse engineering and scientific domains. Understanding how to best use quantum computers for combinatorial optimization is to date an open problem. Here we propose new methods for producing approximate solutions for the maximum cut problem and its weighted version, which are based on relaxations to local quantum Hamiltonians. These relaxations are defined through commutative maps, which in turn are constructed borrowing ideas from quantum random access codes. We establish relations between the spectra of the relaxed Hamiltonians and optimal cuts of the original problems, via two quantum rounding protocols. The first one is based on projections to random magic states. It produces average cuts that approximate the optimal one by a factor of least 0.555 or 0.625, depending on the relaxation chosen, if given access to a quantum state with energy between the optimal classical cut and the maximal relaxed energy. The second rounding protocol is deterministic and it is based on estimation of Pauli observables. The proposed quantum relaxations inherit memory compression from quantum random access codes, which allowed us to test the performances of the methods presented for 3-regular random graphs and a design problem motivated by industry for sizes up to 40 nodes, on superconducting quantum processors.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2595329565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595329565</sourcerecordid><originalsourceid>FETCH-proquest_journals_25953295653</originalsourceid><addsrcrecordid>eNqNjMkKwjAURYMgWLT_EHBdiImpdinFYem0L6-QQkqSVzNIP98ifoCruzjn3BnJuBCbYr_lfEHyEHrGGC93XEqRkfNhGDyO2kJU9IEmRY0uUOxojbbVDiJ6DYZePbZG2UDfGugtgYvJ0rsyMMK3WJF5Byao_LdLsj4dn_WlmN5fSYXY9Ji8m1DDZSUFr2QpxX_WB2YtPH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595329565</pqid></control><display><type>article</type><title>Approximate Solutions of Combinatorial Problems via Quantum Relaxations</title><source>Free E- Journals</source><creator>Fuller, Bryce ; Hadfield, Charles ; Glick, Jennifer R ; Imamichi, Takashi ; Itoko, Toshinari ; Thompson, Richard J ; Jiao, Yang ; Kagele, Marna M ; Blom-Schieber, Adriana W ; Rudy, Raymond ; Mezzacapo, Antonio</creator><creatorcontrib>Fuller, Bryce ; Hadfield, Charles ; Glick, Jennifer R ; Imamichi, Takashi ; Itoko, Toshinari ; Thompson, Richard J ; Jiao, Yang ; Kagele, Marna M ; Blom-Schieber, Adriana W ; Rudy, Raymond ; Mezzacapo, Antonio</creatorcontrib><description>Combinatorial problems are formulated to find optimal designs within a fixed set of constraints. They are commonly found across diverse engineering and scientific domains. Understanding how to best use quantum computers for combinatorial optimization is to date an open problem. Here we propose new methods for producing approximate solutions for the maximum cut problem and its weighted version, which are based on relaxations to local quantum Hamiltonians. These relaxations are defined through commutative maps, which in turn are constructed borrowing ideas from quantum random access codes. We establish relations between the spectra of the relaxed Hamiltonians and optimal cuts of the original problems, via two quantum rounding protocols. The first one is based on projections to random magic states. It produces average cuts that approximate the optimal one by a factor of least 0.555 or 0.625, depending on the relaxation chosen, if given access to a quantum state with energy between the optimal classical cut and the maximal relaxed energy. The second rounding protocol is deterministic and it is based on estimation of Pauli observables. The proposed quantum relaxations inherit memory compression from quantum random access codes, which allowed us to test the performances of the methods presented for 3-regular random graphs and a design problem motivated by industry for sizes up to 40 nodes, on superconducting quantum processors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Combinatorial analysis ; Compression tests ; Optimization ; Production methods ; Quantum computers ; Random access memory ; Rounding</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Fuller, Bryce</creatorcontrib><creatorcontrib>Hadfield, Charles</creatorcontrib><creatorcontrib>Glick, Jennifer R</creatorcontrib><creatorcontrib>Imamichi, Takashi</creatorcontrib><creatorcontrib>Itoko, Toshinari</creatorcontrib><creatorcontrib>Thompson, Richard J</creatorcontrib><creatorcontrib>Jiao, Yang</creatorcontrib><creatorcontrib>Kagele, Marna M</creatorcontrib><creatorcontrib>Blom-Schieber, Adriana W</creatorcontrib><creatorcontrib>Rudy, Raymond</creatorcontrib><creatorcontrib>Mezzacapo, Antonio</creatorcontrib><title>Approximate Solutions of Combinatorial Problems via Quantum Relaxations</title><title>arXiv.org</title><description>Combinatorial problems are formulated to find optimal designs within a fixed set of constraints. They are commonly found across diverse engineering and scientific domains. Understanding how to best use quantum computers for combinatorial optimization is to date an open problem. Here we propose new methods for producing approximate solutions for the maximum cut problem and its weighted version, which are based on relaxations to local quantum Hamiltonians. These relaxations are defined through commutative maps, which in turn are constructed borrowing ideas from quantum random access codes. We establish relations between the spectra of the relaxed Hamiltonians and optimal cuts of the original problems, via two quantum rounding protocols. The first one is based on projections to random magic states. It produces average cuts that approximate the optimal one by a factor of least 0.555 or 0.625, depending on the relaxation chosen, if given access to a quantum state with energy between the optimal classical cut and the maximal relaxed energy. The second rounding protocol is deterministic and it is based on estimation of Pauli observables. The proposed quantum relaxations inherit memory compression from quantum random access codes, which allowed us to test the performances of the methods presented for 3-regular random graphs and a design problem motivated by industry for sizes up to 40 nodes, on superconducting quantum processors.</description><subject>Approximation</subject><subject>Combinatorial analysis</subject><subject>Compression tests</subject><subject>Optimization</subject><subject>Production methods</subject><subject>Quantum computers</subject><subject>Random access memory</subject><subject>Rounding</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMkKwjAURYMgWLT_EHBdiImpdinFYem0L6-QQkqSVzNIP98ifoCruzjn3BnJuBCbYr_lfEHyEHrGGC93XEqRkfNhGDyO2kJU9IEmRY0uUOxojbbVDiJ6DYZePbZG2UDfGugtgYvJ0rsyMMK3WJF5Byao_LdLsj4dn_WlmN5fSYXY9Ji8m1DDZSUFr2QpxX_WB2YtPH4</recordid><startdate>20211108</startdate><enddate>20211108</enddate><creator>Fuller, Bryce</creator><creator>Hadfield, Charles</creator><creator>Glick, Jennifer R</creator><creator>Imamichi, Takashi</creator><creator>Itoko, Toshinari</creator><creator>Thompson, Richard J</creator><creator>Jiao, Yang</creator><creator>Kagele, Marna M</creator><creator>Blom-Schieber, Adriana W</creator><creator>Rudy, Raymond</creator><creator>Mezzacapo, Antonio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211108</creationdate><title>Approximate Solutions of Combinatorial Problems via Quantum Relaxations</title><author>Fuller, Bryce ; Hadfield, Charles ; Glick, Jennifer R ; Imamichi, Takashi ; Itoko, Toshinari ; Thompson, Richard J ; Jiao, Yang ; Kagele, Marna M ; Blom-Schieber, Adriana W ; Rudy, Raymond ; Mezzacapo, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25953295653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Combinatorial analysis</topic><topic>Compression tests</topic><topic>Optimization</topic><topic>Production methods</topic><topic>Quantum computers</topic><topic>Random access memory</topic><topic>Rounding</topic><toplevel>online_resources</toplevel><creatorcontrib>Fuller, Bryce</creatorcontrib><creatorcontrib>Hadfield, Charles</creatorcontrib><creatorcontrib>Glick, Jennifer R</creatorcontrib><creatorcontrib>Imamichi, Takashi</creatorcontrib><creatorcontrib>Itoko, Toshinari</creatorcontrib><creatorcontrib>Thompson, Richard J</creatorcontrib><creatorcontrib>Jiao, Yang</creatorcontrib><creatorcontrib>Kagele, Marna M</creatorcontrib><creatorcontrib>Blom-Schieber, Adriana W</creatorcontrib><creatorcontrib>Rudy, Raymond</creatorcontrib><creatorcontrib>Mezzacapo, Antonio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuller, Bryce</au><au>Hadfield, Charles</au><au>Glick, Jennifer R</au><au>Imamichi, Takashi</au><au>Itoko, Toshinari</au><au>Thompson, Richard J</au><au>Jiao, Yang</au><au>Kagele, Marna M</au><au>Blom-Schieber, Adriana W</au><au>Rudy, Raymond</au><au>Mezzacapo, Antonio</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Approximate Solutions of Combinatorial Problems via Quantum Relaxations</atitle><jtitle>arXiv.org</jtitle><date>2021-11-08</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Combinatorial problems are formulated to find optimal designs within a fixed set of constraints. They are commonly found across diverse engineering and scientific domains. Understanding how to best use quantum computers for combinatorial optimization is to date an open problem. Here we propose new methods for producing approximate solutions for the maximum cut problem and its weighted version, which are based on relaxations to local quantum Hamiltonians. These relaxations are defined through commutative maps, which in turn are constructed borrowing ideas from quantum random access codes. We establish relations between the spectra of the relaxed Hamiltonians and optimal cuts of the original problems, via two quantum rounding protocols. The first one is based on projections to random magic states. It produces average cuts that approximate the optimal one by a factor of least 0.555 or 0.625, depending on the relaxation chosen, if given access to a quantum state with energy between the optimal classical cut and the maximal relaxed energy. The second rounding protocol is deterministic and it is based on estimation of Pauli observables. The proposed quantum relaxations inherit memory compression from quantum random access codes, which allowed us to test the performances of the methods presented for 3-regular random graphs and a design problem motivated by industry for sizes up to 40 nodes, on superconducting quantum processors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2595329565
source Free E- Journals
subjects Approximation
Combinatorial analysis
Compression tests
Optimization
Production methods
Quantum computers
Random access memory
Rounding
title Approximate Solutions of Combinatorial Problems via Quantum Relaxations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Approximate%20Solutions%20of%20Combinatorial%20Problems%20via%20Quantum%20Relaxations&rft.jtitle=arXiv.org&rft.au=Fuller,%20Bryce&rft.date=2021-11-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2595329565%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595329565&rft_id=info:pmid/&rfr_iscdi=true