Virtual screening of norbornadiene-based molecular solar thermal energy storage systems using a genetic algorithm

We present a computational methodology for the screening of a chemical space of 1025 substituted norbornadiene molecules for promising kinetically stable molecular solar thermal (MOST) energy storage systems with high energy densities that absorb in the visible part of the solar spectrum. We use sem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-11, Vol.155 (18), p.184105-184105, Article 184105
Hauptverfasser: Ree, Nicolai, Koerstz, Mads, Mikkelsen, Kurt V., Jensen, Jan H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a computational methodology for the screening of a chemical space of 1025 substituted norbornadiene molecules for promising kinetically stable molecular solar thermal (MOST) energy storage systems with high energy densities that absorb in the visible part of the solar spectrum. We use semiempirical tight-binding methods to construct a dataset of nearly 34 000 molecules and train graph convolutional networks to predict energy densities, kinetic stability, and absorption spectra and then use the models together with a genetic algorithm to search the chemical space for promising MOST energy storage systems. We identify 15 kinetically stable molecules, five of which have energy densities greater than 0.45 MJ/kg, and the main conclusion of this study is that the largest energy density that can be obtained for a single norbornadiene moiety with the substituents considered here, while maintaining a long half-life and absorption in the visible spectrum, is around 0.55 MJ/kg.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0063694