Experiment on critical heat flux of subcooled flow boiling in compound heat transfer tubes

•The DNB-type CHF characteristics of subcooled flow boiling in compound heat transfer tubes have been investigated.•The combination of twisted tape inserts and internal thread can delay the occurrence of CHF.•The CHF was directly proportional to the pitch, mass flux and pressure and inversely propor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2021-11, Vol.199, p.117556, Article 117556
Hauptverfasser: Liu, P., Guo, Y.S., Zheng, W.L., Song, Y.T., Peng, X.B., Tang, M.Y., Wang, W.H., Huang, S.F., Ji, J.D., Chen, Q.H., Mao, X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 117556
container_title Applied thermal engineering
container_volume 199
creator Liu, P.
Guo, Y.S.
Zheng, W.L.
Song, Y.T.
Peng, X.B.
Tang, M.Y.
Wang, W.H.
Huang, S.F.
Ji, J.D.
Chen, Q.H.
Mao, X.
description •The DNB-type CHF characteristics of subcooled flow boiling in compound heat transfer tubes have been investigated.•The combination of twisted tape inserts and internal thread can delay the occurrence of CHF.•The CHF was directly proportional to the pitch, mass flux and pressure and inversely proportional to the twist ratio. In order to enhance the Departure from Nucleate Boiling (DNB) type critical heat flux (CHF) of the divertor in International Thermonuclear Experimental Reactor (ITER), the novel compound heat transfer tube (CHTT) was proposed as a compound CHF enhancement technique byinserting a twisted tape into an internalthreadtube (ITT). Firstly, the experiments were investigated for subcooled water flow boiling on four kinds of cooling tubes, including plain tube (PT), tube with twisted tape inserts (TWTT), ITT and CHTT, covering system pressures from 0.2 to 0.8 MPa, inlet temperatures from 25 to 65 ℃, mass fluxes from 543 to 2935 kg/m2s and heat fluxes from 1 to 17 MW/m2. The experimental results showed that the CHTT combined by using the twisted tape inserts and internal thread tube performed better in enhancing the subcooled CHF than the individual technique. The values of CHF in CHTT could be improved by 33.19%, 55.14% and 130.71%, respectively, compared with that of the TWTT, ITT and PT, respectively. Secondly, the effect of twist ratio, pitch, mass flux and pressure on CHF were also analyzed in CHTT. The CHF was directly proportional to the pitch, mass flux and pressure and inversely proportional to the twist ratio. Finally, the five existing subcooled CHF correlations were evaluated based on the present experimental data in CHTT. It was found that the Tong-75-Ⅱ correlation showed the best prediction accuracy with a mean absolute error (MAE) of 32.80% and a root mean square error (RMSE) of 33.72%.
doi_str_mv 10.1016/j.applthermaleng.2021.117556
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2595140798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431121009868</els_id><sourcerecordid>2595140798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-cc07259f4e099b355e069c8642340d82ead45d21311b49504f7d6809a29bc3603</originalsourceid><addsrcrecordid>eNqNkEFLxDAQhYMouK7-h4BeW5M2aRvwIsuuCgte9OIlpOl0N6Xb1CTV9d8bqRdvnmYYvnkz7yF0Q0lKCS1uu1SNYx_24A6qh2GXZiSjKaUl58UJWtCqzBNekOI09jkXCcspPUcX3neE0Kwq2QK9rY8jOHOAIWA7YO1MMFr1eA8q4Lafjti22E-1traHJk7sJ66t6c2wwyby9jDaaWhmPjg1-BYcDlMN_hKdtar3cPVbl-h1s35ZPSbb54en1f020TmvQqI1KTMuWgZEiDrnHEghdFWwLGekqTJQDeNNRuPvNROcsLZsiooIlYla5wXJl-h61h2dfZ_AB9nZyQ3xpIy6nDJSiipSdzOlnfXeQSvHaFu5L0mJ_ElTdvJvmvInTTmnGdc38zpEJx8GnPTawKChMQ50kI01_xP6BkeVhl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595140798</pqid></control><display><type>article</type><title>Experiment on critical heat flux of subcooled flow boiling in compound heat transfer tubes</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, P. ; Guo, Y.S. ; Zheng, W.L. ; Song, Y.T. ; Peng, X.B. ; Tang, M.Y. ; Wang, W.H. ; Huang, S.F. ; Ji, J.D. ; Chen, Q.H. ; Mao, X.</creator><creatorcontrib>Liu, P. ; Guo, Y.S. ; Zheng, W.L. ; Song, Y.T. ; Peng, X.B. ; Tang, M.Y. ; Wang, W.H. ; Huang, S.F. ; Ji, J.D. ; Chen, Q.H. ; Mao, X.</creatorcontrib><description>•The DNB-type CHF characteristics of subcooled flow boiling in compound heat transfer tubes have been investigated.•The combination of twisted tape inserts and internal thread can delay the occurrence of CHF.•The CHF was directly proportional to the pitch, mass flux and pressure and inversely proportional to the twist ratio. In order to enhance the Departure from Nucleate Boiling (DNB) type critical heat flux (CHF) of the divertor in International Thermonuclear Experimental Reactor (ITER), the novel compound heat transfer tube (CHTT) was proposed as a compound CHF enhancement technique byinserting a twisted tape into an internalthreadtube (ITT). Firstly, the experiments were investigated for subcooled water flow boiling on four kinds of cooling tubes, including plain tube (PT), tube with twisted tape inserts (TWTT), ITT and CHTT, covering system pressures from 0.2 to 0.8 MPa, inlet temperatures from 25 to 65 ℃, mass fluxes from 543 to 2935 kg/m2s and heat fluxes from 1 to 17 MW/m2. The experimental results showed that the CHTT combined by using the twisted tape inserts and internal thread tube performed better in enhancing the subcooled CHF than the individual technique. The values of CHF in CHTT could be improved by 33.19%, 55.14% and 130.71%, respectively, compared with that of the TWTT, ITT and PT, respectively. Secondly, the effect of twist ratio, pitch, mass flux and pressure on CHF were also analyzed in CHTT. The CHF was directly proportional to the pitch, mass flux and pressure and inversely proportional to the twist ratio. Finally, the five existing subcooled CHF correlations were evaluated based on the present experimental data in CHTT. It was found that the Tong-75-Ⅱ correlation showed the best prediction accuracy with a mean absolute error (MAE) of 32.80% and a root mean square error (RMSE) of 33.72%.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2021.117556</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Compound heat transfer tubes ; Correlations ; Critical heat flux ; Departure from nucleate boiling ; Heat conductivity ; Heat exchangers ; Heat flux ; Heat transfer ; Inserts ; Nucleate boiling ; Pressure ; Root-mean-square errors ; Subcooled boiling ; Temperature ; Tubes ; Water flow</subject><ispartof>Applied thermal engineering, 2021-11, Vol.199, p.117556, Article 117556</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Nov 25, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-cc07259f4e099b355e069c8642340d82ead45d21311b49504f7d6809a29bc3603</citedby><cites>FETCH-LOGICAL-c358t-cc07259f4e099b355e069c8642340d82ead45d21311b49504f7d6809a29bc3603</cites><orcidid>0000-0002-1849-6652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2021.117556$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Liu, P.</creatorcontrib><creatorcontrib>Guo, Y.S.</creatorcontrib><creatorcontrib>Zheng, W.L.</creatorcontrib><creatorcontrib>Song, Y.T.</creatorcontrib><creatorcontrib>Peng, X.B.</creatorcontrib><creatorcontrib>Tang, M.Y.</creatorcontrib><creatorcontrib>Wang, W.H.</creatorcontrib><creatorcontrib>Huang, S.F.</creatorcontrib><creatorcontrib>Ji, J.D.</creatorcontrib><creatorcontrib>Chen, Q.H.</creatorcontrib><creatorcontrib>Mao, X.</creatorcontrib><title>Experiment on critical heat flux of subcooled flow boiling in compound heat transfer tubes</title><title>Applied thermal engineering</title><description>•The DNB-type CHF characteristics of subcooled flow boiling in compound heat transfer tubes have been investigated.•The combination of twisted tape inserts and internal thread can delay the occurrence of CHF.•The CHF was directly proportional to the pitch, mass flux and pressure and inversely proportional to the twist ratio. In order to enhance the Departure from Nucleate Boiling (DNB) type critical heat flux (CHF) of the divertor in International Thermonuclear Experimental Reactor (ITER), the novel compound heat transfer tube (CHTT) was proposed as a compound CHF enhancement technique byinserting a twisted tape into an internalthreadtube (ITT). Firstly, the experiments were investigated for subcooled water flow boiling on four kinds of cooling tubes, including plain tube (PT), tube with twisted tape inserts (TWTT), ITT and CHTT, covering system pressures from 0.2 to 0.8 MPa, inlet temperatures from 25 to 65 ℃, mass fluxes from 543 to 2935 kg/m2s and heat fluxes from 1 to 17 MW/m2. The experimental results showed that the CHTT combined by using the twisted tape inserts and internal thread tube performed better in enhancing the subcooled CHF than the individual technique. The values of CHF in CHTT could be improved by 33.19%, 55.14% and 130.71%, respectively, compared with that of the TWTT, ITT and PT, respectively. Secondly, the effect of twist ratio, pitch, mass flux and pressure on CHF were also analyzed in CHTT. The CHF was directly proportional to the pitch, mass flux and pressure and inversely proportional to the twist ratio. Finally, the five existing subcooled CHF correlations were evaluated based on the present experimental data in CHTT. It was found that the Tong-75-Ⅱ correlation showed the best prediction accuracy with a mean absolute error (MAE) of 32.80% and a root mean square error (RMSE) of 33.72%.</description><subject>Compound heat transfer tubes</subject><subject>Correlations</subject><subject>Critical heat flux</subject><subject>Departure from nucleate boiling</subject><subject>Heat conductivity</subject><subject>Heat exchangers</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Inserts</subject><subject>Nucleate boiling</subject><subject>Pressure</subject><subject>Root-mean-square errors</subject><subject>Subcooled boiling</subject><subject>Temperature</subject><subject>Tubes</subject><subject>Water flow</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkEFLxDAQhYMouK7-h4BeW5M2aRvwIsuuCgte9OIlpOl0N6Xb1CTV9d8bqRdvnmYYvnkz7yF0Q0lKCS1uu1SNYx_24A6qh2GXZiSjKaUl58UJWtCqzBNekOI09jkXCcspPUcX3neE0Kwq2QK9rY8jOHOAIWA7YO1MMFr1eA8q4Lafjti22E-1traHJk7sJ66t6c2wwyby9jDaaWhmPjg1-BYcDlMN_hKdtar3cPVbl-h1s35ZPSbb54en1f020TmvQqI1KTMuWgZEiDrnHEghdFWwLGekqTJQDeNNRuPvNROcsLZsiooIlYla5wXJl-h61h2dfZ_AB9nZyQ3xpIy6nDJSiipSdzOlnfXeQSvHaFu5L0mJ_ElTdvJvmvInTTmnGdc38zpEJx8GnPTawKChMQ50kI01_xP6BkeVhl4</recordid><startdate>20211125</startdate><enddate>20211125</enddate><creator>Liu, P.</creator><creator>Guo, Y.S.</creator><creator>Zheng, W.L.</creator><creator>Song, Y.T.</creator><creator>Peng, X.B.</creator><creator>Tang, M.Y.</creator><creator>Wang, W.H.</creator><creator>Huang, S.F.</creator><creator>Ji, J.D.</creator><creator>Chen, Q.H.</creator><creator>Mao, X.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-1849-6652</orcidid></search><sort><creationdate>20211125</creationdate><title>Experiment on critical heat flux of subcooled flow boiling in compound heat transfer tubes</title><author>Liu, P. ; Guo, Y.S. ; Zheng, W.L. ; Song, Y.T. ; Peng, X.B. ; Tang, M.Y. ; Wang, W.H. ; Huang, S.F. ; Ji, J.D. ; Chen, Q.H. ; Mao, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-cc07259f4e099b355e069c8642340d82ead45d21311b49504f7d6809a29bc3603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compound heat transfer tubes</topic><topic>Correlations</topic><topic>Critical heat flux</topic><topic>Departure from nucleate boiling</topic><topic>Heat conductivity</topic><topic>Heat exchangers</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Inserts</topic><topic>Nucleate boiling</topic><topic>Pressure</topic><topic>Root-mean-square errors</topic><topic>Subcooled boiling</topic><topic>Temperature</topic><topic>Tubes</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, P.</creatorcontrib><creatorcontrib>Guo, Y.S.</creatorcontrib><creatorcontrib>Zheng, W.L.</creatorcontrib><creatorcontrib>Song, Y.T.</creatorcontrib><creatorcontrib>Peng, X.B.</creatorcontrib><creatorcontrib>Tang, M.Y.</creatorcontrib><creatorcontrib>Wang, W.H.</creatorcontrib><creatorcontrib>Huang, S.F.</creatorcontrib><creatorcontrib>Ji, J.D.</creatorcontrib><creatorcontrib>Chen, Q.H.</creatorcontrib><creatorcontrib>Mao, X.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, P.</au><au>Guo, Y.S.</au><au>Zheng, W.L.</au><au>Song, Y.T.</au><au>Peng, X.B.</au><au>Tang, M.Y.</au><au>Wang, W.H.</au><au>Huang, S.F.</au><au>Ji, J.D.</au><au>Chen, Q.H.</au><au>Mao, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experiment on critical heat flux of subcooled flow boiling in compound heat transfer tubes</atitle><jtitle>Applied thermal engineering</jtitle><date>2021-11-25</date><risdate>2021</risdate><volume>199</volume><spage>117556</spage><pages>117556-</pages><artnum>117556</artnum><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•The DNB-type CHF characteristics of subcooled flow boiling in compound heat transfer tubes have been investigated.•The combination of twisted tape inserts and internal thread can delay the occurrence of CHF.•The CHF was directly proportional to the pitch, mass flux and pressure and inversely proportional to the twist ratio. In order to enhance the Departure from Nucleate Boiling (DNB) type critical heat flux (CHF) of the divertor in International Thermonuclear Experimental Reactor (ITER), the novel compound heat transfer tube (CHTT) was proposed as a compound CHF enhancement technique byinserting a twisted tape into an internalthreadtube (ITT). Firstly, the experiments were investigated for subcooled water flow boiling on four kinds of cooling tubes, including plain tube (PT), tube with twisted tape inserts (TWTT), ITT and CHTT, covering system pressures from 0.2 to 0.8 MPa, inlet temperatures from 25 to 65 ℃, mass fluxes from 543 to 2935 kg/m2s and heat fluxes from 1 to 17 MW/m2. The experimental results showed that the CHTT combined by using the twisted tape inserts and internal thread tube performed better in enhancing the subcooled CHF than the individual technique. The values of CHF in CHTT could be improved by 33.19%, 55.14% and 130.71%, respectively, compared with that of the TWTT, ITT and PT, respectively. Secondly, the effect of twist ratio, pitch, mass flux and pressure on CHF were also analyzed in CHTT. The CHF was directly proportional to the pitch, mass flux and pressure and inversely proportional to the twist ratio. Finally, the five existing subcooled CHF correlations were evaluated based on the present experimental data in CHTT. It was found that the Tong-75-Ⅱ correlation showed the best prediction accuracy with a mean absolute error (MAE) of 32.80% and a root mean square error (RMSE) of 33.72%.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2021.117556</doi><orcidid>https://orcid.org/0000-0002-1849-6652</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2021-11, Vol.199, p.117556, Article 117556
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2595140798
source Elsevier ScienceDirect Journals
subjects Compound heat transfer tubes
Correlations
Critical heat flux
Departure from nucleate boiling
Heat conductivity
Heat exchangers
Heat flux
Heat transfer
Inserts
Nucleate boiling
Pressure
Root-mean-square errors
Subcooled boiling
Temperature
Tubes
Water flow
title Experiment on critical heat flux of subcooled flow boiling in compound heat transfer tubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experiment%20on%20critical%20heat%20flux%20of%20subcooled%20flow%20boiling%20in%20compound%20heat%20transfer%20tubes&rft.jtitle=Applied%20thermal%20engineering&rft.au=Liu,%20P.&rft.date=2021-11-25&rft.volume=199&rft.spage=117556&rft.pages=117556-&rft.artnum=117556&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2021.117556&rft_dat=%3Cproquest_cross%3E2595140798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595140798&rft_id=info:pmid/&rft_els_id=S1359431121009868&rfr_iscdi=true