Manipulating the elasticity of chemically modified graphene aerogel through water surface plasticization
Self-assembled chemically modified graphene (CMG) aerogels with high compressive elasticity are important materials because of their unique properties and broad applications, but there is a lack of guiding principles for the design of elastic CMG aerogels. In this work, we provide new insights into...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2021-10, Vol.184, p.43-52 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | |
container_start_page | 43 |
container_title | Carbon (New York) |
container_volume | 184 |
creator | Zhou, An'an Yang, Qianqian Xu, Ke Zhou, Qiang Wu, Jianyang Bai, Hua |
description | Self-assembled chemically modified graphene (CMG) aerogels with high compressive elasticity are important materials because of their unique properties and broad applications, but there is a lack of guiding principles for the design of elastic CMG aerogels. In this work, we provide new insights into the elasticity of chemical modified graphene aerogels. We demonstrate that the self-assembled CMG aerogels have intrinsic compressive elasticity, and report a reversible transition of CMG aerogels from elasticity to plasticity caused by water adsorption. Experimental data and molecular dynamics simulations show that water molecules on the surface of the ultrathin CMG cell walls in the aerogel form a hydrogen bond network, which hinders the shape recovery of the bent cell walls and plasticize the aerogel. A general method is then developed to enhance the elasticity of CMG aerogel by reducing its surface hydrophilicity with thermal treatment. The method efficiently imparts good elasticity to aerogels prepared by conventional hydrothermal methods. This work clarifies the important influence of water surface plasticization on the elasticity of CMG aerogels, and provides principles for the design of highly elastic aerogels based on low dimensional nanomaterials.
[Display omitted]
•The chemically converted graphene aerogels have intrinsic compressive elasticity.•Absorbed water reduces the elasticity of the aerogels by surface plasticization.•Removing oxygenated groups improves the elasticity of the aerogels in the air. |
doi_str_mv | 10.1016/j.carbon.2021.07.065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2595140729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622321007430</els_id><sourcerecordid>2595140729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4943893896e6763210c6ddb117bcafdac40e9ff9d7d6f98cfb541f2ff5992c103</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8Bz61Jmn7kIsjiF6x40XNIk8k2S7epSausv94s61kYGAbe95mZF6FrSnJKaHW7zbUKrR9yRhjNSZ2TqjxBC9rURVY0gp6iBSGkySrGinN0EeM2jbyhfIG6VzW4ce7V5IYNnjrA0Ks4Oe2mPfYW6w52Tqu-3-OdN846MHgT1NjBAFhB8Bvoky34edPhbzVBwHEOVmnA4x_oJ7H9cInOrOojXP31Jfp4fHhfPWfrt6eX1f0600XBp4wLni5OVUFVVwWjRFfGtJTWrVbWKM0JCGuFqU1lRaNtW3JqmbWlEExTUizRzZE7Bv85Q5zk1s9hSCslK0VJOamZSCp-VOngYwxg5RjcToW9pEQeMpVbecxUHjKVpJYp02S7O9ogffDlIMioHQwajAugJ2m8-x_wC2CVhBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595140729</pqid></control><display><type>article</type><title>Manipulating the elasticity of chemically modified graphene aerogel through water surface plasticization</title><source>Elsevier ScienceDirect Journals</source><creator>Zhou, An'an ; Yang, Qianqian ; Xu, Ke ; Zhou, Qiang ; Wu, Jianyang ; Bai, Hua</creator><creatorcontrib>Zhou, An'an ; Yang, Qianqian ; Xu, Ke ; Zhou, Qiang ; Wu, Jianyang ; Bai, Hua</creatorcontrib><description>Self-assembled chemically modified graphene (CMG) aerogels with high compressive elasticity are important materials because of their unique properties and broad applications, but there is a lack of guiding principles for the design of elastic CMG aerogels. In this work, we provide new insights into the elasticity of chemical modified graphene aerogels. We demonstrate that the self-assembled CMG aerogels have intrinsic compressive elasticity, and report a reversible transition of CMG aerogels from elasticity to plasticity caused by water adsorption. Experimental data and molecular dynamics simulations show that water molecules on the surface of the ultrathin CMG cell walls in the aerogel form a hydrogen bond network, which hinders the shape recovery of the bent cell walls and plasticize the aerogel. A general method is then developed to enhance the elasticity of CMG aerogel by reducing its surface hydrophilicity with thermal treatment. The method efficiently imparts good elasticity to aerogels prepared by conventional hydrothermal methods. This work clarifies the important influence of water surface plasticization on the elasticity of CMG aerogels, and provides principles for the design of highly elastic aerogels based on low dimensional nanomaterials.
[Display omitted]
•The chemically converted graphene aerogels have intrinsic compressive elasticity.•Absorbed water reduces the elasticity of the aerogels by surface plasticization.•Removing oxygenated groups improves the elasticity of the aerogels in the air.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2021.07.065</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Adsorbed water ; Adsorption ; Aerogels ; Elasticity ; Graphene ; Heat treatment ; Hydrogen bonds ; Materials elasticity ; MD simulations ; Molecular dynamics ; Nanocomposites ; Nanomaterials ; Plasticization ; Principles ; Relative humidity ; Self-assembly ; Studies ; Thermal treatment ; Water chemistry</subject><ispartof>Carbon (New York), 2021-10, Vol.184, p.43-52</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 30, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4943893896e6763210c6ddb117bcafdac40e9ff9d7d6f98cfb541f2ff5992c103</citedby><cites>FETCH-LOGICAL-c334t-4943893896e6763210c6ddb117bcafdac40e9ff9d7d6f98cfb541f2ff5992c103</cites><orcidid>0000-0002-9094-4835 ; 0000-0001-8403-9217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2021.07.065$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Zhou, An'an</creatorcontrib><creatorcontrib>Yang, Qianqian</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Zhou, Qiang</creatorcontrib><creatorcontrib>Wu, Jianyang</creatorcontrib><creatorcontrib>Bai, Hua</creatorcontrib><title>Manipulating the elasticity of chemically modified graphene aerogel through water surface plasticization</title><title>Carbon (New York)</title><description>Self-assembled chemically modified graphene (CMG) aerogels with high compressive elasticity are important materials because of their unique properties and broad applications, but there is a lack of guiding principles for the design of elastic CMG aerogels. In this work, we provide new insights into the elasticity of chemical modified graphene aerogels. We demonstrate that the self-assembled CMG aerogels have intrinsic compressive elasticity, and report a reversible transition of CMG aerogels from elasticity to plasticity caused by water adsorption. Experimental data and molecular dynamics simulations show that water molecules on the surface of the ultrathin CMG cell walls in the aerogel form a hydrogen bond network, which hinders the shape recovery of the bent cell walls and plasticize the aerogel. A general method is then developed to enhance the elasticity of CMG aerogel by reducing its surface hydrophilicity with thermal treatment. The method efficiently imparts good elasticity to aerogels prepared by conventional hydrothermal methods. This work clarifies the important influence of water surface plasticization on the elasticity of CMG aerogels, and provides principles for the design of highly elastic aerogels based on low dimensional nanomaterials.
[Display omitted]
•The chemically converted graphene aerogels have intrinsic compressive elasticity.•Absorbed water reduces the elasticity of the aerogels by surface plasticization.•Removing oxygenated groups improves the elasticity of the aerogels in the air.</description><subject>Adsorbed water</subject><subject>Adsorption</subject><subject>Aerogels</subject><subject>Elasticity</subject><subject>Graphene</subject><subject>Heat treatment</subject><subject>Hydrogen bonds</subject><subject>Materials elasticity</subject><subject>MD simulations</subject><subject>Molecular dynamics</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Plasticization</subject><subject>Principles</subject><subject>Relative humidity</subject><subject>Self-assembly</subject><subject>Studies</subject><subject>Thermal treatment</subject><subject>Water chemistry</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw8Bz61Jmn7kIsjiF6x40XNIk8k2S7epSausv94s61kYGAbe95mZF6FrSnJKaHW7zbUKrR9yRhjNSZ2TqjxBC9rURVY0gp6iBSGkySrGinN0EeM2jbyhfIG6VzW4ce7V5IYNnjrA0Ks4Oe2mPfYW6w52Tqu-3-OdN846MHgT1NjBAFhB8Bvoky34edPhbzVBwHEOVmnA4x_oJ7H9cInOrOojXP31Jfp4fHhfPWfrt6eX1f0600XBp4wLni5OVUFVVwWjRFfGtJTWrVbWKM0JCGuFqU1lRaNtW3JqmbWlEExTUizRzZE7Bv85Q5zk1s9hSCslK0VJOamZSCp-VOngYwxg5RjcToW9pEQeMpVbecxUHjKVpJYp02S7O9ogffDlIMioHQwajAugJ2m8-x_wC2CVhBQ</recordid><startdate>20211030</startdate><enddate>20211030</enddate><creator>Zhou, An'an</creator><creator>Yang, Qianqian</creator><creator>Xu, Ke</creator><creator>Zhou, Qiang</creator><creator>Wu, Jianyang</creator><creator>Bai, Hua</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9094-4835</orcidid><orcidid>https://orcid.org/0000-0001-8403-9217</orcidid></search><sort><creationdate>20211030</creationdate><title>Manipulating the elasticity of chemically modified graphene aerogel through water surface plasticization</title><author>Zhou, An'an ; Yang, Qianqian ; Xu, Ke ; Zhou, Qiang ; Wu, Jianyang ; Bai, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4943893896e6763210c6ddb117bcafdac40e9ff9d7d6f98cfb541f2ff5992c103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorbed water</topic><topic>Adsorption</topic><topic>Aerogels</topic><topic>Elasticity</topic><topic>Graphene</topic><topic>Heat treatment</topic><topic>Hydrogen bonds</topic><topic>Materials elasticity</topic><topic>MD simulations</topic><topic>Molecular dynamics</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Plasticization</topic><topic>Principles</topic><topic>Relative humidity</topic><topic>Self-assembly</topic><topic>Studies</topic><topic>Thermal treatment</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, An'an</creatorcontrib><creatorcontrib>Yang, Qianqian</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Zhou, Qiang</creatorcontrib><creatorcontrib>Wu, Jianyang</creatorcontrib><creatorcontrib>Bai, Hua</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, An'an</au><au>Yang, Qianqian</au><au>Xu, Ke</au><au>Zhou, Qiang</au><au>Wu, Jianyang</au><au>Bai, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating the elasticity of chemically modified graphene aerogel through water surface plasticization</atitle><jtitle>Carbon (New York)</jtitle><date>2021-10-30</date><risdate>2021</risdate><volume>184</volume><spage>43</spage><epage>52</epage><pages>43-52</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Self-assembled chemically modified graphene (CMG) aerogels with high compressive elasticity are important materials because of their unique properties and broad applications, but there is a lack of guiding principles for the design of elastic CMG aerogels. In this work, we provide new insights into the elasticity of chemical modified graphene aerogels. We demonstrate that the self-assembled CMG aerogels have intrinsic compressive elasticity, and report a reversible transition of CMG aerogels from elasticity to plasticity caused by water adsorption. Experimental data and molecular dynamics simulations show that water molecules on the surface of the ultrathin CMG cell walls in the aerogel form a hydrogen bond network, which hinders the shape recovery of the bent cell walls and plasticize the aerogel. A general method is then developed to enhance the elasticity of CMG aerogel by reducing its surface hydrophilicity with thermal treatment. The method efficiently imparts good elasticity to aerogels prepared by conventional hydrothermal methods. This work clarifies the important influence of water surface plasticization on the elasticity of CMG aerogels, and provides principles for the design of highly elastic aerogels based on low dimensional nanomaterials.
[Display omitted]
•The chemically converted graphene aerogels have intrinsic compressive elasticity.•Absorbed water reduces the elasticity of the aerogels by surface plasticization.•Removing oxygenated groups improves the elasticity of the aerogels in the air.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2021.07.065</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9094-4835</orcidid><orcidid>https://orcid.org/0000-0001-8403-9217</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2021-10, Vol.184, p.43-52 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2595140729 |
source | Elsevier ScienceDirect Journals |
subjects | Adsorbed water Adsorption Aerogels Elasticity Graphene Heat treatment Hydrogen bonds Materials elasticity MD simulations Molecular dynamics Nanocomposites Nanomaterials Plasticization Principles Relative humidity Self-assembly Studies Thermal treatment Water chemistry |
title | Manipulating the elasticity of chemically modified graphene aerogel through water surface plasticization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20the%20elasticity%20of%20chemically%20modified%20graphene%20aerogel%20through%20water%20surface%20plasticization&rft.jtitle=Carbon%20(New%20York)&rft.au=Zhou,%20An'an&rft.date=2021-10-30&rft.volume=184&rft.spage=43&rft.epage=52&rft.pages=43-52&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2021.07.065&rft_dat=%3Cproquest_cross%3E2595140729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595140729&rft_id=info:pmid/&rft_els_id=S0008622321007430&rfr_iscdi=true |