Cavity-enhanced Raman spectroscopy for trace hydrogen gas sensing

As a potential energy carrier and industrial material, hydrogen is playing an increasingly important role in many fields. In many applications, the detection of hydrogen requires higher sensitivity, faster response and larger dynamic measurement range. Cavity enhancement Raman spectroscopy (CERS) us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Liang zi dian zi xue bao 2021-01 (5), p.669
Hauptverfasser: Yang, Qingying, Cheng, Cunfeng, Sun, Yu, Liu, Anwen, Hu, Shuiming
Format: Artikel
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 669
container_title Liang zi dian zi xue bao
container_volume
creator Yang, Qingying
Cheng, Cunfeng
Sun, Yu
Liu, Anwen
Hu, Shuiming
description As a potential energy carrier and industrial material, hydrogen is playing an increasingly important role in many fields. In many applications, the detection of hydrogen requires higher sensitivity, faster response and larger dynamic measurement range. Cavity enhancement Raman spectroscopy (CERS) uses Pound-Drever-Hall (PDH) frequency stabilization technology to lock the laser and high-precision optical resonator to achieve a 1900 times intracavity power gain for the detection of trace hydrogen. Under the laser input power of 7 mW, when the integration time is 100 s, the self-built cavity enhanced Raman spectroscopy device has a detection limit of 2 Pa. The experimental results also show that the Raman scattering intensity has a good relationship with the laser power and gas pressure. The linear relationship demonstrates the potential of the CERS method for high-precision gas quantitative analysis.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2595140408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595140408</sourcerecordid><originalsourceid>FETCH-proquest_journals_25951404083</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEMCtbLOxxwLiRtau0oRXEW9xLS0xt6UnNSoW-vgw_g9A_fvxCRkjKPM31QK7FmHqTUiSrySJxK8-7DHCN1hizWcDNPQ8Aj2uAdWzfO0DgPwRuL0M21dy0StIaBkbindiuWjXkw7n7diP3lfC-v8ejda0IO1eAmT1-qkqzIlJZaHtP_rg85dzkx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595140408</pqid></control><display><type>article</type><title>Cavity-enhanced Raman spectroscopy for trace hydrogen gas sensing</title><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Yang, Qingying ; Cheng, Cunfeng ; Sun, Yu ; Liu, Anwen ; Hu, Shuiming</creator><creatorcontrib>Yang, Qingying ; Cheng, Cunfeng ; Sun, Yu ; Liu, Anwen ; Hu, Shuiming</creatorcontrib><description>As a potential energy carrier and industrial material, hydrogen is playing an increasingly important role in many fields. In many applications, the detection of hydrogen requires higher sensitivity, faster response and larger dynamic measurement range. Cavity enhancement Raman spectroscopy (CERS) uses Pound-Drever-Hall (PDH) frequency stabilization technology to lock the laser and high-precision optical resonator to achieve a 1900 times intracavity power gain for the detection of trace hydrogen. Under the laser input power of 7 mW, when the integration time is 100 s, the self-built cavity enhanced Raman spectroscopy device has a detection limit of 2 Pa. The experimental results also show that the Raman scattering intensity has a good relationship with the laser power and gas pressure. The linear relationship demonstrates the potential of the CERS method for high-precision gas quantitative analysis.</description><identifier>ISSN: 1007-5461</identifier><language>chi ; eng</language><publisher>Beijing: Science Press</publisher><subject>Frequency stabilization ; Gas pressure ; Gas sensors ; Hydrogen ; Lasers ; Optical resonators ; Potential energy ; Power gain ; Raman spectra ; Raman spectroscopy ; Spectrum analysis</subject><ispartof>Liang zi dian zi xue bao, 2021-01 (5), p.669</ispartof><rights>Copyright Science Press 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Yang, Qingying</creatorcontrib><creatorcontrib>Cheng, Cunfeng</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Liu, Anwen</creatorcontrib><creatorcontrib>Hu, Shuiming</creatorcontrib><title>Cavity-enhanced Raman spectroscopy for trace hydrogen gas sensing</title><title>Liang zi dian zi xue bao</title><description>As a potential energy carrier and industrial material, hydrogen is playing an increasingly important role in many fields. In many applications, the detection of hydrogen requires higher sensitivity, faster response and larger dynamic measurement range. Cavity enhancement Raman spectroscopy (CERS) uses Pound-Drever-Hall (PDH) frequency stabilization technology to lock the laser and high-precision optical resonator to achieve a 1900 times intracavity power gain for the detection of trace hydrogen. Under the laser input power of 7 mW, when the integration time is 100 s, the self-built cavity enhanced Raman spectroscopy device has a detection limit of 2 Pa. The experimental results also show that the Raman scattering intensity has a good relationship with the laser power and gas pressure. The linear relationship demonstrates the potential of the CERS method for high-precision gas quantitative analysis.</description><subject>Frequency stabilization</subject><subject>Gas pressure</subject><subject>Gas sensors</subject><subject>Hydrogen</subject><subject>Lasers</subject><subject>Optical resonators</subject><subject>Potential energy</subject><subject>Power gain</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><issn>1007-5461</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNyrsKwjAUgOEMCtbLOxxwLiRtau0oRXEW9xLS0xt6UnNSoW-vgw_g9A_fvxCRkjKPM31QK7FmHqTUiSrySJxK8-7DHCN1hizWcDNPQ8Aj2uAdWzfO0DgPwRuL0M21dy0StIaBkbindiuWjXkw7n7diP3lfC-v8ejda0IO1eAmT1-qkqzIlJZaHtP_rg85dzkx</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Yang, Qingying</creator><creator>Cheng, Cunfeng</creator><creator>Sun, Yu</creator><creator>Liu, Anwen</creator><creator>Hu, Shuiming</creator><general>Science Press</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20210101</creationdate><title>Cavity-enhanced Raman spectroscopy for trace hydrogen gas sensing</title><author>Yang, Qingying ; Cheng, Cunfeng ; Sun, Yu ; Liu, Anwen ; Hu, Shuiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25951404083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>Frequency stabilization</topic><topic>Gas pressure</topic><topic>Gas sensors</topic><topic>Hydrogen</topic><topic>Lasers</topic><topic>Optical resonators</topic><topic>Potential energy</topic><topic>Power gain</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qingying</creatorcontrib><creatorcontrib>Cheng, Cunfeng</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Liu, Anwen</creatorcontrib><creatorcontrib>Hu, Shuiming</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Liang zi dian zi xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qingying</au><au>Cheng, Cunfeng</au><au>Sun, Yu</au><au>Liu, Anwen</au><au>Hu, Shuiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cavity-enhanced Raman spectroscopy for trace hydrogen gas sensing</atitle><jtitle>Liang zi dian zi xue bao</jtitle><date>2021-01-01</date><risdate>2021</risdate><issue>5</issue><spage>669</spage><pages>669-</pages><issn>1007-5461</issn><abstract>As a potential energy carrier and industrial material, hydrogen is playing an increasingly important role in many fields. In many applications, the detection of hydrogen requires higher sensitivity, faster response and larger dynamic measurement range. Cavity enhancement Raman spectroscopy (CERS) uses Pound-Drever-Hall (PDH) frequency stabilization technology to lock the laser and high-precision optical resonator to achieve a 1900 times intracavity power gain for the detection of trace hydrogen. Under the laser input power of 7 mW, when the integration time is 100 s, the self-built cavity enhanced Raman spectroscopy device has a detection limit of 2 Pa. The experimental results also show that the Raman scattering intensity has a good relationship with the laser power and gas pressure. The linear relationship demonstrates the potential of the CERS method for high-precision gas quantitative analysis.</abstract><cop>Beijing</cop><pub>Science Press</pub></addata></record>
fulltext fulltext
identifier ISSN: 1007-5461
ispartof Liang zi dian zi xue bao, 2021-01 (5), p.669
issn 1007-5461
language chi ; eng
recordid cdi_proquest_journals_2595140408
source DOAJ Directory of Open Access Journals; Alma/SFX Local Collection
subjects Frequency stabilization
Gas pressure
Gas sensors
Hydrogen
Lasers
Optical resonators
Potential energy
Power gain
Raman spectra
Raman spectroscopy
Spectrum analysis
title Cavity-enhanced Raman spectroscopy for trace hydrogen gas sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cavity-enhanced%20Raman%20spectroscopy%20for%20trace%20hydrogen%20gas%20sensing&rft.jtitle=Liang%20zi%20dian%20zi%20xue%20bao&rft.au=Yang,%20Qingying&rft.date=2021-01-01&rft.issue=5&rft.spage=669&rft.pages=669-&rft.issn=1007-5461&rft_id=info:doi/&rft_dat=%3Cproquest%3E2595140408%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595140408&rft_id=info:pmid/&rfr_iscdi=true