Cavity-enhanced Raman spectroscopy for trace hydrogen gas sensing
As a potential energy carrier and industrial material, hydrogen is playing an increasingly important role in many fields. In many applications, the detection of hydrogen requires higher sensitivity, faster response and larger dynamic measurement range. Cavity enhancement Raman spectroscopy (CERS) us...
Gespeichert in:
Veröffentlicht in: | Liang zi dian zi xue bao 2021-01 (5), p.669 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 669 |
container_title | Liang zi dian zi xue bao |
container_volume | |
creator | Yang, Qingying Cheng, Cunfeng Sun, Yu Liu, Anwen Hu, Shuiming |
description | As a potential energy carrier and industrial material, hydrogen is playing an increasingly important role in many fields. In many applications, the detection of hydrogen requires higher sensitivity, faster response and larger dynamic measurement range. Cavity enhancement Raman spectroscopy (CERS) uses Pound-Drever-Hall (PDH) frequency stabilization technology to lock the laser and high-precision optical resonator to achieve a 1900 times intracavity power gain for the detection of trace hydrogen. Under the laser input power of 7 mW, when the integration time is 100 s, the self-built cavity enhanced Raman spectroscopy device has a detection limit of 2 Pa. The experimental results also show that the Raman scattering intensity has a good relationship with the laser power and gas pressure. The linear relationship demonstrates the potential of the CERS method for high-precision gas quantitative analysis. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2595140408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595140408</sourcerecordid><originalsourceid>FETCH-proquest_journals_25951404083</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEMCtbLOxxwLiRtau0oRXEW9xLS0xt6UnNSoW-vgw_g9A_fvxCRkjKPM31QK7FmHqTUiSrySJxK8-7DHCN1hizWcDNPQ8Aj2uAdWzfO0DgPwRuL0M21dy0StIaBkbindiuWjXkw7n7diP3lfC-v8ejda0IO1eAmT1-qkqzIlJZaHtP_rg85dzkx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595140408</pqid></control><display><type>article</type><title>Cavity-enhanced Raman spectroscopy for trace hydrogen gas sensing</title><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Yang, Qingying ; Cheng, Cunfeng ; Sun, Yu ; Liu, Anwen ; Hu, Shuiming</creator><creatorcontrib>Yang, Qingying ; Cheng, Cunfeng ; Sun, Yu ; Liu, Anwen ; Hu, Shuiming</creatorcontrib><description>As a potential energy carrier and industrial material, hydrogen is playing an increasingly important role in many fields. In many applications, the detection of hydrogen requires higher sensitivity, faster response and larger dynamic measurement range. Cavity enhancement Raman spectroscopy (CERS) uses Pound-Drever-Hall (PDH) frequency stabilization technology to lock the laser and high-precision optical resonator to achieve a 1900 times intracavity power gain for the detection of trace hydrogen. Under the laser input power of 7 mW, when the integration time is 100 s, the self-built cavity enhanced Raman spectroscopy device has a detection limit of 2 Pa. The experimental results also show that the Raman scattering intensity has a good relationship with the laser power and gas pressure. The linear relationship demonstrates the potential of the CERS method for high-precision gas quantitative analysis.</description><identifier>ISSN: 1007-5461</identifier><language>chi ; eng</language><publisher>Beijing: Science Press</publisher><subject>Frequency stabilization ; Gas pressure ; Gas sensors ; Hydrogen ; Lasers ; Optical resonators ; Potential energy ; Power gain ; Raman spectra ; Raman spectroscopy ; Spectrum analysis</subject><ispartof>Liang zi dian zi xue bao, 2021-01 (5), p.669</ispartof><rights>Copyright Science Press 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Yang, Qingying</creatorcontrib><creatorcontrib>Cheng, Cunfeng</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Liu, Anwen</creatorcontrib><creatorcontrib>Hu, Shuiming</creatorcontrib><title>Cavity-enhanced Raman spectroscopy for trace hydrogen gas sensing</title><title>Liang zi dian zi xue bao</title><description>As a potential energy carrier and industrial material, hydrogen is playing an increasingly important role in many fields. In many applications, the detection of hydrogen requires higher sensitivity, faster response and larger dynamic measurement range. Cavity enhancement Raman spectroscopy (CERS) uses Pound-Drever-Hall (PDH) frequency stabilization technology to lock the laser and high-precision optical resonator to achieve a 1900 times intracavity power gain for the detection of trace hydrogen. Under the laser input power of 7 mW, when the integration time is 100 s, the self-built cavity enhanced Raman spectroscopy device has a detection limit of 2 Pa. The experimental results also show that the Raman scattering intensity has a good relationship with the laser power and gas pressure. The linear relationship demonstrates the potential of the CERS method for high-precision gas quantitative analysis.</description><subject>Frequency stabilization</subject><subject>Gas pressure</subject><subject>Gas sensors</subject><subject>Hydrogen</subject><subject>Lasers</subject><subject>Optical resonators</subject><subject>Potential energy</subject><subject>Power gain</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><issn>1007-5461</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNyrsKwjAUgOEMCtbLOxxwLiRtau0oRXEW9xLS0xt6UnNSoW-vgw_g9A_fvxCRkjKPM31QK7FmHqTUiSrySJxK8-7DHCN1hizWcDNPQ8Aj2uAdWzfO0DgPwRuL0M21dy0StIaBkbindiuWjXkw7n7diP3lfC-v8ejda0IO1eAmT1-qkqzIlJZaHtP_rg85dzkx</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Yang, Qingying</creator><creator>Cheng, Cunfeng</creator><creator>Sun, Yu</creator><creator>Liu, Anwen</creator><creator>Hu, Shuiming</creator><general>Science Press</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20210101</creationdate><title>Cavity-enhanced Raman spectroscopy for trace hydrogen gas sensing</title><author>Yang, Qingying ; Cheng, Cunfeng ; Sun, Yu ; Liu, Anwen ; Hu, Shuiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25951404083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>Frequency stabilization</topic><topic>Gas pressure</topic><topic>Gas sensors</topic><topic>Hydrogen</topic><topic>Lasers</topic><topic>Optical resonators</topic><topic>Potential energy</topic><topic>Power gain</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qingying</creatorcontrib><creatorcontrib>Cheng, Cunfeng</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Liu, Anwen</creatorcontrib><creatorcontrib>Hu, Shuiming</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Liang zi dian zi xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qingying</au><au>Cheng, Cunfeng</au><au>Sun, Yu</au><au>Liu, Anwen</au><au>Hu, Shuiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cavity-enhanced Raman spectroscopy for trace hydrogen gas sensing</atitle><jtitle>Liang zi dian zi xue bao</jtitle><date>2021-01-01</date><risdate>2021</risdate><issue>5</issue><spage>669</spage><pages>669-</pages><issn>1007-5461</issn><abstract>As a potential energy carrier and industrial material, hydrogen is playing an increasingly important role in many fields. In many applications, the detection of hydrogen requires higher sensitivity, faster response and larger dynamic measurement range. Cavity enhancement Raman spectroscopy (CERS) uses Pound-Drever-Hall (PDH) frequency stabilization technology to lock the laser and high-precision optical resonator to achieve a 1900 times intracavity power gain for the detection of trace hydrogen. Under the laser input power of 7 mW, when the integration time is 100 s, the self-built cavity enhanced Raman spectroscopy device has a detection limit of 2 Pa. The experimental results also show that the Raman scattering intensity has a good relationship with the laser power and gas pressure. The linear relationship demonstrates the potential of the CERS method for high-precision gas quantitative analysis.</abstract><cop>Beijing</cop><pub>Science Press</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-5461 |
ispartof | Liang zi dian zi xue bao, 2021-01 (5), p.669 |
issn | 1007-5461 |
language | chi ; eng |
recordid | cdi_proquest_journals_2595140408 |
source | DOAJ Directory of Open Access Journals; Alma/SFX Local Collection |
subjects | Frequency stabilization Gas pressure Gas sensors Hydrogen Lasers Optical resonators Potential energy Power gain Raman spectra Raman spectroscopy Spectrum analysis |
title | Cavity-enhanced Raman spectroscopy for trace hydrogen gas sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cavity-enhanced%20Raman%20spectroscopy%20for%20trace%20hydrogen%20gas%20sensing&rft.jtitle=Liang%20zi%20dian%20zi%20xue%20bao&rft.au=Yang,%20Qingying&rft.date=2021-01-01&rft.issue=5&rft.spage=669&rft.pages=669-&rft.issn=1007-5461&rft_id=info:doi/&rft_dat=%3Cproquest%3E2595140408%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595140408&rft_id=info:pmid/&rfr_iscdi=true |